{"title":"Zygosaccharomyces属的染色体进化谱系。","authors":"Atsushi Sato, Yasuo Ohnishi","doi":"10.1093/femsyr/foad017","DOIUrl":null,"url":null,"abstract":"<p><p>Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/e6/foad017.PMC10035502.pdf","citationCount":"0","resultStr":"{\"title\":\"The chromosomal evolutionary lineage of the genus Zygosaccharomyces.\",\"authors\":\"Atsushi Sato, Yasuo Ohnishi\",\"doi\":\"10.1093/femsyr/foad017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/e6/foad017.PMC10035502.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
rouxii Zygosaccharomyces rouxii的基因组倍性是工业酵母研究领域的一个有趣的话题。然而,rouxii的基因组与其他Zygosaccharomyces物种之间的进化关系是复杂的,尚未完全了解。在这项研究中,我们确定了Z. rouxii NCYC 3042(也被称为“Z. pseudorouxii”)和Z. mellis CBS 736T的基因组序列。我们还对21株酵母菌的基因组进行了比较分析,其中包括9种Zygosaccharomyces的17株。比较基因组学结果显示,17株Zygosaccharomyces菌株可分为4个类群,包含9个基因组类型:(1) Z. rouxii、Z. mellis、Z. sapae、Z. siamensis和‘万能念珠菌’t-1属于rouxii类群,共享4个相关基因组型(rouxii -1 ~ rouxii -4); (2) Z. bailii、Z. parabailii和Z. pseudobailii属于bailii类群,共享3个相关基因组型(baili -1 ~ baili -3);(3、4)Z. bisporus和Z. kombuchaensis分别属于biporus类群和kombuchaensis类群,均具有单倍体基因组。Zygosaccharomyces基因组似乎通过进化事件获得了复杂性和多样性,如种间杂交、互易位和这9种基因组类型的二倍体化。
The chromosomal evolutionary lineage of the genus Zygosaccharomyces.
Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.