Julian S. Haimovich MD , Nate Diamant BS , Shaan Khurshid MD, MPH , Paolo Di Achille PhD , Christopher Reeder PhD , Sam Friedman PhD , Pulkit Singh BA , Walter Spurlock BA , Patrick T. Ellinor MD, PhD , Anthony Philippakis MD, PhD , Puneet Batra PhD , Jennifer E. Ho MD , Steven A. Lubitz MD, MPH
{"title":"利用心电图对肥厚性心脏病进行人工智能分类","authors":"Julian S. Haimovich MD , Nate Diamant BS , Shaan Khurshid MD, MPH , Paolo Di Achille PhD , Christopher Reeder PhD , Sam Friedman PhD , Pulkit Singh BA , Walter Spurlock BA , Patrick T. Ellinor MD, PhD , Anthony Philippakis MD, PhD , Puneet Batra PhD , Jennifer E. Ho MD , Steven A. Lubitz MD, MPH","doi":"10.1016/j.cvdhj.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.</p></div><div><h3>Objective</h3><p>To evaluate if artificial intelligence–enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.</p></div><div><h3>Methods</h3><p>We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression (“LVH-Net”). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I (“LVH-Net Lead I”) or lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.</p></div><div><h3>Results</h3><p>The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.</p></div><div><h3>Conclusion</h3><p>An artificial intelligence–enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"4 2","pages":"Pages 48-59"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123506/pdf/","citationCount":"2","resultStr":"{\"title\":\"Artificial intelligence–enabled classification of hypertrophic heart diseases using electrocardiograms\",\"authors\":\"Julian S. Haimovich MD , Nate Diamant BS , Shaan Khurshid MD, MPH , Paolo Di Achille PhD , Christopher Reeder PhD , Sam Friedman PhD , Pulkit Singh BA , Walter Spurlock BA , Patrick T. Ellinor MD, PhD , Anthony Philippakis MD, PhD , Puneet Batra PhD , Jennifer E. Ho MD , Steven A. Lubitz MD, MPH\",\"doi\":\"10.1016/j.cvdhj.2023.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.</p></div><div><h3>Objective</h3><p>To evaluate if artificial intelligence–enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.</p></div><div><h3>Methods</h3><p>We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression (“LVH-Net”). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I (“LVH-Net Lead I”) or lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.</p></div><div><h3>Results</h3><p>The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.</p></div><div><h3>Conclusion</h3><p>An artificial intelligence–enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.</p></div>\",\"PeriodicalId\":72527,\"journal\":{\"name\":\"Cardiovascular digital health journal\",\"volume\":\"4 2\",\"pages\":\"Pages 48-59\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123506/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular digital health journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666693623000208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693623000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Artificial intelligence–enabled classification of hypertrophic heart diseases using electrocardiograms
Background
Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.
Objective
To evaluate if artificial intelligence–enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.
Methods
We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression (“LVH-Net”). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I (“LVH-Net Lead I”) or lead II (“LVH-Net Lead II”) from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.
Results
The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93–0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90–0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.
Conclusion
An artificial intelligence–enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.