微生物辅助的多方面重金属修复过程:迈向可持续和更绿色未来的清洁视角。

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-05-01 Epub Date: 2023-02-27 DOI:10.1080/07388551.2023.2170862
Komal Agrawal, Tannu Ruhil, Vijai Kumar Gupta, Pradeep Verma
{"title":"微生物辅助的多方面重金属修复过程:迈向可持续和更绿色未来的清洁视角。","authors":"Komal Agrawal, Tannu Ruhil, Vijai Kumar Gupta, Pradeep Verma","doi":"10.1080/07388551.2023.2170862","DOIUrl":null,"url":null,"abstract":"<p><p>Rapidly increasing heavy metal waste has adversely affected the environment and the Earth's health. The lack of appropriate remediation technologies has worsened the issue globally, especially in developing countries. Heavy-metals contaminants have severely impacted the environment and led to devastating conditions owing to their abundance and reactivity. As they are nondegradable, the potential risk increases even at a low concentration. However, heavy-metal remediation has increased with the up-gradation of technologies and integration of new approaches. Also, of all the treatment methodologies, microbial-assisted multifaceted approach for ameliorating heavy metals is a promising strategy for propagating the idea of a green and sustainable environment with minimal waste aggregation. Microbial remediation combined with different biotechniques could aid in unraveling new methods for eradicating heavy metals. Thus, the present review focuses on various microbial remediation approaches and their affecting factors, enabling recapitulation of the interplay between heavy-metals ions and microorganisms. Additionally, heavy-metals remediation mechanisms adapted by microorganisms, the role of genetically modified (GM) microorganisms, life cycle assessment (LCA), techno-economic assessment (TEA) limitations, and prospects of microbial-assisted amelioration of heavy-metals have been elaborated in the current review with focus toward \"<i>sustainable and greener future</i>.\"</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"429-447"},"PeriodicalIF":8.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial assisted multifaceted amelioration processes of heavy-metal remediation: a clean perspective toward sustainable and greener future.\",\"authors\":\"Komal Agrawal, Tannu Ruhil, Vijai Kumar Gupta, Pradeep Verma\",\"doi\":\"10.1080/07388551.2023.2170862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapidly increasing heavy metal waste has adversely affected the environment and the Earth's health. The lack of appropriate remediation technologies has worsened the issue globally, especially in developing countries. Heavy-metals contaminants have severely impacted the environment and led to devastating conditions owing to their abundance and reactivity. As they are nondegradable, the potential risk increases even at a low concentration. However, heavy-metal remediation has increased with the up-gradation of technologies and integration of new approaches. Also, of all the treatment methodologies, microbial-assisted multifaceted approach for ameliorating heavy metals is a promising strategy for propagating the idea of a green and sustainable environment with minimal waste aggregation. Microbial remediation combined with different biotechniques could aid in unraveling new methods for eradicating heavy metals. Thus, the present review focuses on various microbial remediation approaches and their affecting factors, enabling recapitulation of the interplay between heavy-metals ions and microorganisms. Additionally, heavy-metals remediation mechanisms adapted by microorganisms, the role of genetically modified (GM) microorganisms, life cycle assessment (LCA), techno-economic assessment (TEA) limitations, and prospects of microbial-assisted amelioration of heavy-metals have been elaborated in the current review with focus toward \\\"<i>sustainable and greener future</i>.\\\"</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"429-447\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2023.2170862\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2170862","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迅速增加的重金属废物对环境和地球健康造成了不利影响。在全球范围内,尤其是在发展中国家,由于缺乏适当的补救技术,这一问题日益恶化。重金属污染物因其数量多、反应性强而严重影响环境,并导致破坏性的状况。由于它们不可降解,即使浓度很低,潜在风险也会增加。然而,随着技术的升级和新方法的融入,重金属的补救措施也在不断增加。此外,在所有处理方法中,微生物辅助的多层面重金属改善方法是一种前景广阔的战略,可宣传绿色和可持续环境的理念,将废物聚集的程度降至最低。将微生物修复与不同的生物技术相结合,有助于探索消除重金属的新方法。因此,本综述重点介绍了各种微生物修复方法及其影响因素,从而再现重金属离子与微生物之间的相互作用。此外,本综述还阐述了微生物适应重金属修复的机制、转基因微生物的作用、生命周期评估(LCA)、技术经济评估(TEA)的局限性以及微生物辅助改善重金属的前景,重点关注 "可持续发展和更加绿色的未来"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial assisted multifaceted amelioration processes of heavy-metal remediation: a clean perspective toward sustainable and greener future.

Rapidly increasing heavy metal waste has adversely affected the environment and the Earth's health. The lack of appropriate remediation technologies has worsened the issue globally, especially in developing countries. Heavy-metals contaminants have severely impacted the environment and led to devastating conditions owing to their abundance and reactivity. As they are nondegradable, the potential risk increases even at a low concentration. However, heavy-metal remediation has increased with the up-gradation of technologies and integration of new approaches. Also, of all the treatment methodologies, microbial-assisted multifaceted approach for ameliorating heavy metals is a promising strategy for propagating the idea of a green and sustainable environment with minimal waste aggregation. Microbial remediation combined with different biotechniques could aid in unraveling new methods for eradicating heavy metals. Thus, the present review focuses on various microbial remediation approaches and their affecting factors, enabling recapitulation of the interplay between heavy-metals ions and microorganisms. Additionally, heavy-metals remediation mechanisms adapted by microorganisms, the role of genetically modified (GM) microorganisms, life cycle assessment (LCA), techno-economic assessment (TEA) limitations, and prospects of microbial-assisted amelioration of heavy-metals have been elaborated in the current review with focus toward "sustainable and greener future."

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Insight into recent advances in microalgae biogranulation in wastewater treatment. Advances in Vibrio-related infection management: an integrated technology approach for aquaculture and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1