{"title":"胎儿心音描记术的最新进展和未来发展","authors":"Radana Kahankova;Martina Mikolasova;Rene Jaros;Katerina Barnova;Martina Ladrova;Radek Martinek","doi":"10.1109/RBME.2022.3179633","DOIUrl":null,"url":null,"abstract":"Fetal phonocardiography (fPCG) is receiving attention as it is a promising method for continuous fetal monitoring due to its non-invasive and passive nature. However, it suffers from the interference from various sources, overlapping the desired signal in the time and frequency domains. This paper introduces the state-of-the-art methods used for fPCG signal extraction and processing, as well as means of detection and classification of various features defining fetal health state. It also provides an extensive summary of remaining challenges, along with the practical insights and suggestions for the future research directions.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/10007429/09786823.pdf","citationCount":"6","resultStr":"{\"title\":\"A Review of Recent Advances and Future Developments in Fetal Phonocardiography\",\"authors\":\"Radana Kahankova;Martina Mikolasova;Rene Jaros;Katerina Barnova;Martina Ladrova;Radek Martinek\",\"doi\":\"10.1109/RBME.2022.3179633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fetal phonocardiography (fPCG) is receiving attention as it is a promising method for continuous fetal monitoring due to its non-invasive and passive nature. However, it suffers from the interference from various sources, overlapping the desired signal in the time and frequency domains. This paper introduces the state-of-the-art methods used for fPCG signal extraction and processing, as well as means of detection and classification of various features defining fetal health state. It also provides an extensive summary of remaining challenges, along with the practical insights and suggestions for the future research directions.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/4664312/10007429/09786823.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9786823/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9786823/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Review of Recent Advances and Future Developments in Fetal Phonocardiography
Fetal phonocardiography (fPCG) is receiving attention as it is a promising method for continuous fetal monitoring due to its non-invasive and passive nature. However, it suffers from the interference from various sources, overlapping the desired signal in the time and frequency domains. This paper introduces the state-of-the-art methods used for fPCG signal extraction and processing, as well as means of detection and classification of various features defining fetal health state. It also provides an extensive summary of remaining challenges, along with the practical insights and suggestions for the future research directions.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.