采用16S rDNA纳米孔测序技术对福尔马林固定石蜡包埋神经病理标本进行快速细菌鉴定。

IF 4 2区 医学 Q1 CLINICAL NEUROLOGY Neuropathology and Applied Neurobiology Pub Date : 2023-02-01 DOI:10.1111/nan.12871
Anne Albers, Dorothee Cäcilia Spille, Eric Suero-Molina, Frieder Schaumburg, Walter Stummer, Werner Paulus, Christian Thomas
{"title":"采用16S rDNA纳米孔测序技术对福尔马林固定石蜡包埋神经病理标本进行快速细菌鉴定。","authors":"Anne Albers, Dorothee Cäcilia Spille, Eric Suero-Molina, Frieder Schaumburg, Walter Stummer, Werner Paulus, Christian Thomas","doi":"10.1111/nan.12871","DOIUrl":null,"url":null,"abstract":"Bacterial infections of the central nervous system (CNS) can be severe, life-threatening diseases. Early detection of causative pathogens is crucial for the rapid administration of a tailored antibiotic regime. However, microbiological cultures are negative in one third of bacterial CNS abscesses [1], and routine neuropathology diagnostics are typically limited to histological staining techniques such as Gram or Warthin-Starry. Moreover, tissue might not have been submitted for microbiological culture at the time of surgery in cases without a preoperative suspicion of CNS infection. Molecular diagnostics using pathogen-specific PCR provides an alternative diagnostic approach and has been successfully applied to formalin-fixed paraffinembedded (FFPE) tissue samples [2] but is hypothesis driven and thus requires a priori suspicion of the causative pathogen. Metagenomic sequencing of the bacterial 16S rRNA gene represents an unbiased alternative and has been successfully applied to study the bacterial metagenome of brain abscesses based on DNA extracted from unfixed specimens [3, 4]. Here, we introduce a rapid and scalable approach for bacterial pathogen detection from FFPE specimens using nanopore sequencing of 16S rDNA amplicons. FFPE samples of 32 bacterial CNS infections (31 brain abscesses and 1 subdural empyema) and 3 control samples (reactive brain tissue) were retrieved from our archive. Clinical data and microbiological culture results were compiled by reviewing patient records. After DNA extraction, multiplex PCR with four primer sets covering variable regions 3–7 of the 16S rRNA gene was performed (see the supporting information). PCR products were sequenced on a nanopore Mk1c device. After basecalling, raw fastq files were uploaded on the EPI2ME platform (Metrichor Ltd., Oxford, UK), and results were loaded into the R environment for further analysis (supporting information). Raw sequencing files are available under the BioProject Accession No. PRJNA899355 (ncbi.nlm.nih.gov/bioproject/899355). The median age of the 8 females and 24 males was 57 years (range 13–84 years). Preoperatively, a diagnosis of bacterial CNS infection has been suspected in 24 patients (75%), whereas a malignant tumour was radiologically considered in six cases (19%); in two patients, the aetiology of the lesion had been unclear (Table S1). On Gram staining, bacteria were identified in 23 samples (72%). All cases had positive bacterial cultures, and 10 samples (31%) showed mixed infections with up to three taxa. Deep 16S rDNA nanopore sequencing yielded 31,706 classifiable reads per sample (median, interquartile range: 18,255–40,901). To control for potential sources of contamination, we additionally sequenced four no-template PCR controls (NTC) and three reactive brain tissue samples (median depth: 27,077 reads). Taxonomic classification of the controls revealed Brachybacterium, Brevundimonas and Bradyrhizobium as the most prevalent genera accounting for >90% of reads (Figure S1). To further evaluate these taxa’s influence on metagenomic classification, we sequenced five serial dilutions (range from 1:10 to 1:10) of a sample with a monoinfection of Nocardia abscessus (sample 1). With subsequent dilutions, metagenomic profiling revealed an increase in contaminating reads Received: 30 September 2022 Revised: 9 November 2022 Accepted: 13 December 2022","PeriodicalId":19151,"journal":{"name":"Neuropathology and Applied Neurobiology","volume":"49 1","pages":"e12871"},"PeriodicalIF":4.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid bacterial identification from formalin-fixed paraffin-embedded neuropathology specimens using 16S rDNA nanopore sequencing.\",\"authors\":\"Anne Albers, Dorothee Cäcilia Spille, Eric Suero-Molina, Frieder Schaumburg, Walter Stummer, Werner Paulus, Christian Thomas\",\"doi\":\"10.1111/nan.12871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial infections of the central nervous system (CNS) can be severe, life-threatening diseases. Early detection of causative pathogens is crucial for the rapid administration of a tailored antibiotic regime. However, microbiological cultures are negative in one third of bacterial CNS abscesses [1], and routine neuropathology diagnostics are typically limited to histological staining techniques such as Gram or Warthin-Starry. Moreover, tissue might not have been submitted for microbiological culture at the time of surgery in cases without a preoperative suspicion of CNS infection. Molecular diagnostics using pathogen-specific PCR provides an alternative diagnostic approach and has been successfully applied to formalin-fixed paraffinembedded (FFPE) tissue samples [2] but is hypothesis driven and thus requires a priori suspicion of the causative pathogen. Metagenomic sequencing of the bacterial 16S rRNA gene represents an unbiased alternative and has been successfully applied to study the bacterial metagenome of brain abscesses based on DNA extracted from unfixed specimens [3, 4]. Here, we introduce a rapid and scalable approach for bacterial pathogen detection from FFPE specimens using nanopore sequencing of 16S rDNA amplicons. FFPE samples of 32 bacterial CNS infections (31 brain abscesses and 1 subdural empyema) and 3 control samples (reactive brain tissue) were retrieved from our archive. Clinical data and microbiological culture results were compiled by reviewing patient records. After DNA extraction, multiplex PCR with four primer sets covering variable regions 3–7 of the 16S rRNA gene was performed (see the supporting information). PCR products were sequenced on a nanopore Mk1c device. After basecalling, raw fastq files were uploaded on the EPI2ME platform (Metrichor Ltd., Oxford, UK), and results were loaded into the R environment for further analysis (supporting information). Raw sequencing files are available under the BioProject Accession No. PRJNA899355 (ncbi.nlm.nih.gov/bioproject/899355). The median age of the 8 females and 24 males was 57 years (range 13–84 years). Preoperatively, a diagnosis of bacterial CNS infection has been suspected in 24 patients (75%), whereas a malignant tumour was radiologically considered in six cases (19%); in two patients, the aetiology of the lesion had been unclear (Table S1). On Gram staining, bacteria were identified in 23 samples (72%). All cases had positive bacterial cultures, and 10 samples (31%) showed mixed infections with up to three taxa. Deep 16S rDNA nanopore sequencing yielded 31,706 classifiable reads per sample (median, interquartile range: 18,255–40,901). To control for potential sources of contamination, we additionally sequenced four no-template PCR controls (NTC) and three reactive brain tissue samples (median depth: 27,077 reads). Taxonomic classification of the controls revealed Brachybacterium, Brevundimonas and Bradyrhizobium as the most prevalent genera accounting for >90% of reads (Figure S1). To further evaluate these taxa’s influence on metagenomic classification, we sequenced five serial dilutions (range from 1:10 to 1:10) of a sample with a monoinfection of Nocardia abscessus (sample 1). With subsequent dilutions, metagenomic profiling revealed an increase in contaminating reads Received: 30 September 2022 Revised: 9 November 2022 Accepted: 13 December 2022\",\"PeriodicalId\":19151,\"journal\":{\"name\":\"Neuropathology and Applied Neurobiology\",\"volume\":\"49 1\",\"pages\":\"e12871\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropathology and Applied Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nan.12871\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology and Applied Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nan.12871","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid bacterial identification from formalin-fixed paraffin-embedded neuropathology specimens using 16S rDNA nanopore sequencing.
Bacterial infections of the central nervous system (CNS) can be severe, life-threatening diseases. Early detection of causative pathogens is crucial for the rapid administration of a tailored antibiotic regime. However, microbiological cultures are negative in one third of bacterial CNS abscesses [1], and routine neuropathology diagnostics are typically limited to histological staining techniques such as Gram or Warthin-Starry. Moreover, tissue might not have been submitted for microbiological culture at the time of surgery in cases without a preoperative suspicion of CNS infection. Molecular diagnostics using pathogen-specific PCR provides an alternative diagnostic approach and has been successfully applied to formalin-fixed paraffinembedded (FFPE) tissue samples [2] but is hypothesis driven and thus requires a priori suspicion of the causative pathogen. Metagenomic sequencing of the bacterial 16S rRNA gene represents an unbiased alternative and has been successfully applied to study the bacterial metagenome of brain abscesses based on DNA extracted from unfixed specimens [3, 4]. Here, we introduce a rapid and scalable approach for bacterial pathogen detection from FFPE specimens using nanopore sequencing of 16S rDNA amplicons. FFPE samples of 32 bacterial CNS infections (31 brain abscesses and 1 subdural empyema) and 3 control samples (reactive brain tissue) were retrieved from our archive. Clinical data and microbiological culture results were compiled by reviewing patient records. After DNA extraction, multiplex PCR with four primer sets covering variable regions 3–7 of the 16S rRNA gene was performed (see the supporting information). PCR products were sequenced on a nanopore Mk1c device. After basecalling, raw fastq files were uploaded on the EPI2ME platform (Metrichor Ltd., Oxford, UK), and results were loaded into the R environment for further analysis (supporting information). Raw sequencing files are available under the BioProject Accession No. PRJNA899355 (ncbi.nlm.nih.gov/bioproject/899355). The median age of the 8 females and 24 males was 57 years (range 13–84 years). Preoperatively, a diagnosis of bacterial CNS infection has been suspected in 24 patients (75%), whereas a malignant tumour was radiologically considered in six cases (19%); in two patients, the aetiology of the lesion had been unclear (Table S1). On Gram staining, bacteria were identified in 23 samples (72%). All cases had positive bacterial cultures, and 10 samples (31%) showed mixed infections with up to three taxa. Deep 16S rDNA nanopore sequencing yielded 31,706 classifiable reads per sample (median, interquartile range: 18,255–40,901). To control for potential sources of contamination, we additionally sequenced four no-template PCR controls (NTC) and three reactive brain tissue samples (median depth: 27,077 reads). Taxonomic classification of the controls revealed Brachybacterium, Brevundimonas and Bradyrhizobium as the most prevalent genera accounting for >90% of reads (Figure S1). To further evaluate these taxa’s influence on metagenomic classification, we sequenced five serial dilutions (range from 1:10 to 1:10) of a sample with a monoinfection of Nocardia abscessus (sample 1). With subsequent dilutions, metagenomic profiling revealed an increase in contaminating reads Received: 30 September 2022 Revised: 9 November 2022 Accepted: 13 December 2022
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
2.00%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Neuropathology and Applied Neurobiology is an international journal for the publication of original papers, both clinical and experimental, on problems and pathological processes in neuropathology and muscle disease. Established in 1974, this reputable and well respected journal is an international journal sponsored by the British Neuropathological Society, one of the world leading societies for Neuropathology, pioneering research and scientific endeavour with a global membership base. Additionally members of the British Neuropathological Society get 50% off the cost of print colour on acceptance of their article.
期刊最新文献
Nanopore sequencing identifies Borrelia miyamotoi as an unexpected cause of meningitis after B cell depletion. Phenotypic and epigenetic heterogeneity in FGFR2-fused glial and glioneuronal tumours. Microglial activation without peripheral immune cell infiltration characterises mouse and human cerebral small vessel disease. Microglia induce an interferon-stimulated gene expression profile in glioblastoma and increase glioblastoma resistance to temozolomide. GFAP expression in the BRAIN during human postnatal development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1