表面肌电信号质量分析技术综述

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL IEEE Reviews in Biomedical Engineering Pub Date : 2022-04-05 DOI:10.1109/RBME.2022.3164797
Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan
{"title":"表面肌电信号质量分析技术综述","authors":"Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan","doi":"10.1109/RBME.2022.3164797","DOIUrl":null,"url":null,"abstract":"Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Review of Techniques for Surface Electromyography Signal Quality Analysis\",\"authors\":\"Emma Farago;Dawn MacIsaac;Michelle Suk;Adrian D. C. Chan\",\"doi\":\"10.1109/RBME.2022.3164797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9749945/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9749945/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 12

摘要

肌电图(EMG)信号在各种应用中发挥着重要作用,包括假肢控制、肌肉健康评估、康复和工作场所监测。包括噪声、干扰和伪影在内的信号污染物会降低EMG信号的质量,导致误解;因此,重要的是在进一步分析之前确保所收集的EMG信号具有足够的质量。进行文献检索,以确定检测、识别和量化表面肌电信号中污染物的当前方法。我们确定了两种主要策略:1)自下而上的方法来识别特定且特征良好的污染物,2)自上而下的方法来检测高密度EMG阵列中的异常EMG信号或异常通道。最佳类型的方法取决于数据收集的环境,包括环境、应用程序对污染物的易感性以及应用程序对污染的弹性。需要进一步的研究来评估具有多种同时污染物的肌电图,确定干净肌电图数据的基本事实,并开发用户友好和自主的肌电图信号质量分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Techniques for Surface Electromyography Signal Quality Analysis
Electromyography (EMG) signals are instrumental in a variety of applications including prosthetic control, muscle health assessment, rehabilitation, and workplace monitoring. Signal contaminants including noise, interference, and artifacts can degrade the quality of the EMG signal, leading to misinterpretation; therefore it is important to ensure that collected EMG signals are of sufficient quality prior to further analysis. A literature search was conducted to identify current approaches for detecting, identifying, and quantifying contaminants within surface EMG signals. We identified two main strategies: 1) bottom-up approaches for identifying specific and well-characterized contaminants and 2) top-down approaches for detecting anomalous EMG signals or outlier channels in high-density EMG arrays. The best type(s) of approach are dependent on the circumstances of data collection including the environment, the susceptibility of the application to contaminants, and the resilience of the application to contaminants. Further research is needed for assessing EMG with multiple simultaneous contaminants, identifying ground-truths for clean EMG data, and developing user-friendly and autonomous methods for EMG signal quality analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
期刊最新文献
A Manual for Genome and Transcriptome Engineering. Artificial General Intelligence for Medical Imaging Analysis. A Survey of Few-Shot Learning for Biomedical Time Series. The Physiome Project and Digital Twins. Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1