Thomas H. Nown;Priti Upadhyay;Andrew Kerr;Ivan Andonovic;Christos Tachtatzis;Madeleine A. Grealy
{"title":"用于运动康复的实时运动超声系统的映射综述","authors":"Thomas H. Nown;Priti Upadhyay;Andrew Kerr;Ivan Andonovic;Christos Tachtatzis;Madeleine A. Grealy","doi":"10.1109/RBME.2022.3187840","DOIUrl":null,"url":null,"abstract":"Movement sonification is emerging as a useful tool for rehabilitation, with increasing evidence in support of its use. To create such a system requires component considerations outside of typical sonification design choices, such as the dimension of movement to sonify, section of anatomy to track, and methodology of motion capture. This review takes this emerging and highly diverse area of literature and keyword-code existing real-time movement sonification systems, to analyze and highlight current trends in these design choices, as such providing an overview of existing systems. A combination of snowballing through relevant existing reviews and a systematic search of multiple databases were utilized to obtain a list of projects for data extraction. The review categorizes systems into three sections: identifying the link between physical dimension to auditory dimension used in sonification, identifying the target anatomy tracked, identifying the movement tracking system used to monitor the target anatomy. The review proceeds to analyze the systematic mapping of the literature and provide results of the data analysis highlighting common and innovative design choices used, irrespective of application, before discussing the findings in the context of movement rehabilitation. A database containing the mapped keywords assigned to each project are submitted with this review.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"672-686"},"PeriodicalIF":17.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Mapping Review of Real-Time Movement Sonification Systems for Movement Rehabilitation\",\"authors\":\"Thomas H. Nown;Priti Upadhyay;Andrew Kerr;Ivan Andonovic;Christos Tachtatzis;Madeleine A. Grealy\",\"doi\":\"10.1109/RBME.2022.3187840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movement sonification is emerging as a useful tool for rehabilitation, with increasing evidence in support of its use. To create such a system requires component considerations outside of typical sonification design choices, such as the dimension of movement to sonify, section of anatomy to track, and methodology of motion capture. This review takes this emerging and highly diverse area of literature and keyword-code existing real-time movement sonification systems, to analyze and highlight current trends in these design choices, as such providing an overview of existing systems. A combination of snowballing through relevant existing reviews and a systematic search of multiple databases were utilized to obtain a list of projects for data extraction. The review categorizes systems into three sections: identifying the link between physical dimension to auditory dimension used in sonification, identifying the target anatomy tracked, identifying the movement tracking system used to monitor the target anatomy. The review proceeds to analyze the systematic mapping of the literature and provide results of the data analysis highlighting common and innovative design choices used, irrespective of application, before discussing the findings in the context of movement rehabilitation. A database containing the mapped keywords assigned to each project are submitted with this review.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"16 \",\"pages\":\"672-686\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9813380/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9813380/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Mapping Review of Real-Time Movement Sonification Systems for Movement Rehabilitation
Movement sonification is emerging as a useful tool for rehabilitation, with increasing evidence in support of its use. To create such a system requires component considerations outside of typical sonification design choices, such as the dimension of movement to sonify, section of anatomy to track, and methodology of motion capture. This review takes this emerging and highly diverse area of literature and keyword-code existing real-time movement sonification systems, to analyze and highlight current trends in these design choices, as such providing an overview of existing systems. A combination of snowballing through relevant existing reviews and a systematic search of multiple databases were utilized to obtain a list of projects for data extraction. The review categorizes systems into three sections: identifying the link between physical dimension to auditory dimension used in sonification, identifying the target anatomy tracked, identifying the movement tracking system used to monitor the target anatomy. The review proceeds to analyze the systematic mapping of the literature and provide results of the data analysis highlighting common and innovative design choices used, irrespective of application, before discussing the findings in the context of movement rehabilitation. A database containing the mapped keywords assigned to each project are submitted with this review.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.