Esa Räsänen PhD , Teemu Pukkila , Matias Kanniainen , Minna Miettinen , Rostislav Duda , Jiyeong Kim , Janne Solanpää PhD , Katriina Aalto-Setälä MD , Ilya Potapov PhD
{"title":"基于传递熵的精确QT校正方法","authors":"Esa Räsänen PhD , Teemu Pukkila , Matias Kanniainen , Minna Miettinen , Rostislav Duda , Jiyeong Kim , Janne Solanpää PhD , Katriina Aalto-Setälä MD , Ilya Potapov PhD","doi":"10.1016/j.cvdhj.2022.10.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The QT interval in the electrocardiogram (ECG) is a fundamental risk measure for arrhythmic adverse cardiac events. However, the QT interval depends on the heart rate and must be corrected accordingly. The present QT correction (QTc) methods are either simple models leading to under- or overcorrection, or impractical in requiring long-term empirical data. In general, there is no consensus on the best QTc method.</p></div><div><h3>Objective</h3><p>We introduce a model-free QTc method—AccuQT—that computes QTc by minimizing the information transfer from R-R to QT intervals. The objective is to establish and validate a QTc method that provides superior stability and reliability without models or empirical data.</p></div><div><h3>Methods</h3><p>We tested AccuQT against the most commonly used QT correction methods by using long-term ECG recordings of more than 200 healthy subjects from PhysioNet and THEW databases.</p></div><div><h3>Results</h3><p>AccuQT overperforms the previously reported correction methods: the proportion of false-positives is reduced from 16% (Bazett) to 3% (AccuQT) for the PhysioNet data. In particular, the QTc variance is significantly reduced and thus the RR-QT stability is increased.</p></div><div><h3>Conclusion</h3><p>AccuQT has significant potential to become the QTc method of choice in clinical studies and drug development. The method can be implemented in any device recording R-R and QT intervals.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"4 1","pages":"Pages 1-8"},"PeriodicalIF":2.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972000/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate QT correction method from transfer entropy\",\"authors\":\"Esa Räsänen PhD , Teemu Pukkila , Matias Kanniainen , Minna Miettinen , Rostislav Duda , Jiyeong Kim , Janne Solanpää PhD , Katriina Aalto-Setälä MD , Ilya Potapov PhD\",\"doi\":\"10.1016/j.cvdhj.2022.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The QT interval in the electrocardiogram (ECG) is a fundamental risk measure for arrhythmic adverse cardiac events. However, the QT interval depends on the heart rate and must be corrected accordingly. The present QT correction (QTc) methods are either simple models leading to under- or overcorrection, or impractical in requiring long-term empirical data. In general, there is no consensus on the best QTc method.</p></div><div><h3>Objective</h3><p>We introduce a model-free QTc method—AccuQT—that computes QTc by minimizing the information transfer from R-R to QT intervals. The objective is to establish and validate a QTc method that provides superior stability and reliability without models or empirical data.</p></div><div><h3>Methods</h3><p>We tested AccuQT against the most commonly used QT correction methods by using long-term ECG recordings of more than 200 healthy subjects from PhysioNet and THEW databases.</p></div><div><h3>Results</h3><p>AccuQT overperforms the previously reported correction methods: the proportion of false-positives is reduced from 16% (Bazett) to 3% (AccuQT) for the PhysioNet data. In particular, the QTc variance is significantly reduced and thus the RR-QT stability is increased.</p></div><div><h3>Conclusion</h3><p>AccuQT has significant potential to become the QTc method of choice in clinical studies and drug development. The method can be implemented in any device recording R-R and QT intervals.</p></div>\",\"PeriodicalId\":72527,\"journal\":{\"name\":\"Cardiovascular digital health journal\",\"volume\":\"4 1\",\"pages\":\"Pages 1-8\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular digital health journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666693622001773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693622001773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Accurate QT correction method from transfer entropy
Background
The QT interval in the electrocardiogram (ECG) is a fundamental risk measure for arrhythmic adverse cardiac events. However, the QT interval depends on the heart rate and must be corrected accordingly. The present QT correction (QTc) methods are either simple models leading to under- or overcorrection, or impractical in requiring long-term empirical data. In general, there is no consensus on the best QTc method.
Objective
We introduce a model-free QTc method—AccuQT—that computes QTc by minimizing the information transfer from R-R to QT intervals. The objective is to establish and validate a QTc method that provides superior stability and reliability without models or empirical data.
Methods
We tested AccuQT against the most commonly used QT correction methods by using long-term ECG recordings of more than 200 healthy subjects from PhysioNet and THEW databases.
Results
AccuQT overperforms the previously reported correction methods: the proportion of false-positives is reduced from 16% (Bazett) to 3% (AccuQT) for the PhysioNet data. In particular, the QTc variance is significantly reduced and thus the RR-QT stability is increased.
Conclusion
AccuQT has significant potential to become the QTc method of choice in clinical studies and drug development. The method can be implemented in any device recording R-R and QT intervals.