ncrnlocate - el:基于集成学习的多标签ncRNA亚细胞位置预测模型。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-11-10 DOI:10.1093/bfgp/elad007
Tao Bai, Bin Liu
{"title":"ncrnlocate - el:基于集成学习的多标签ncRNA亚细胞位置预测模型。","authors":"Tao Bai, Bin Liu","doi":"10.1093/bfgp/elad007","DOIUrl":null,"url":null,"abstract":"<p><p>Subcellular localizations of ncRNAs are associated with specific functions. Currently, an increasing number of biological researchers are focusing on computational approaches to identify subcellular localizations of ncRNAs. However, the performance of the existing computational methods is low and needs to be further studied. First, most prediction models are trained with outdated databases. Second, only a few predictors can identify multiple subcellular localizations simultaneously. In this work, we establish three human ncRNA subcellular datasets based on the latest RNALocate, including lncRNA, miRNA and snoRNA, and then we propose a novel multi-label classification model based on ensemble learning called ncRNALocate-EL to identify multi-label subcellular localizations of three ncRNAs. The results show that the ncRNALocate-EL outperforms previous methods. Our method achieved an average precision of 0.709,0.977 and 0.730 on three human ncRNA datasets. The web server of ncRNALocate-EL has been established, which can be accessed at https://bliulab.net/ncRNALocate-EL.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ncRNALocate-EL: a multi-label ncRNA subcellular locality prediction model based on ensemble learning.\",\"authors\":\"Tao Bai, Bin Liu\",\"doi\":\"10.1093/bfgp/elad007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subcellular localizations of ncRNAs are associated with specific functions. Currently, an increasing number of biological researchers are focusing on computational approaches to identify subcellular localizations of ncRNAs. However, the performance of the existing computational methods is low and needs to be further studied. First, most prediction models are trained with outdated databases. Second, only a few predictors can identify multiple subcellular localizations simultaneously. In this work, we establish three human ncRNA subcellular datasets based on the latest RNALocate, including lncRNA, miRNA and snoRNA, and then we propose a novel multi-label classification model based on ensemble learning called ncRNALocate-EL to identify multi-label subcellular localizations of three ncRNAs. The results show that the ncRNALocate-EL outperforms previous methods. Our method achieved an average precision of 0.709,0.977 and 0.730 on three human ncRNA datasets. The web server of ncRNALocate-EL has been established, which can be accessed at https://bliulab.net/ncRNALocate-EL.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elad007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

ncrna的亚细胞定位与特定功能相关。目前,越来越多的生物学研究人员正在关注计算方法来识别ncrna的亚细胞定位。然而,现有的计算方法的性能较低,需要进一步研究。首先,大多数预测模型都是用过时的数据库训练的。其次,只有少数预测因子可以同时识别多个亚细胞定位。在这项工作中,我们基于最新的rnallocate建立了三个人类ncRNA亚细胞数据集,包括lncRNA, miRNA和snoRNA,然后我们提出了一个新的基于集成学习的多标签分类模型ncrnallocate - el来识别三种ncRNA的多标签亚细胞定位。结果表明,ncrnlocate - el方法优于以往的方法。该方法在3个人类ncRNA数据集上的平均精度分别为0.709、0.977和0.730。已建立ncRNALocate-EL的web服务器,可登录https://bliulab.net/ncRNALocate-EL访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ncRNALocate-EL: a multi-label ncRNA subcellular locality prediction model based on ensemble learning.

Subcellular localizations of ncRNAs are associated with specific functions. Currently, an increasing number of biological researchers are focusing on computational approaches to identify subcellular localizations of ncRNAs. However, the performance of the existing computational methods is low and needs to be further studied. First, most prediction models are trained with outdated databases. Second, only a few predictors can identify multiple subcellular localizations simultaneously. In this work, we establish three human ncRNA subcellular datasets based on the latest RNALocate, including lncRNA, miRNA and snoRNA, and then we propose a novel multi-label classification model based on ensemble learning called ncRNALocate-EL to identify multi-label subcellular localizations of three ncRNAs. The results show that the ncRNALocate-EL outperforms previous methods. Our method achieved an average precision of 0.709,0.977 and 0.730 on three human ncRNA datasets. The web server of ncRNALocate-EL has been established, which can be accessed at https://bliulab.net/ncRNALocate-EL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1