{"title":"狭窄、扭曲和波动:利用超声推断鲨鱼螺旋肠的复杂运动","authors":"Taketeru Tomita , Kiyomi Murakumo , Rui Matsumoto","doi":"10.1016/j.zool.2023.126077","DOIUrl":null,"url":null,"abstract":"<div><p>Shark intestine presents a complicated three-dimensional morphology, characterized by the development of a coiled internal septum. A basic question regarding the intestine is its movement. This lack of knowledge has prevented the testing of the hypothesis on its functional morphology<span>. The present study, to our knowledge, for the first time, visualized the intestinal movement of three captive sharks using an “underwater ultrasound” system. The results indicated that the movement of the shark intestine involved strong twisting. We suspect that this motion is the mechanism that tightens the coiling of the internal septum, enhancing compression of the intestinal lumen. Our data also revealed the presence of active undulatory movement of the internal septum, of which the undulatory wave propagated in the opposite (anal-to-oral) direction. We hypothesize that this motion decreases the flow rate of the digesta and increases absorptive time. These observations indicate that the kinematics of the shark spiral intestine are more complicated than expected based on morphology, and the fluid flow in the intestine is likely highly regulated by intestinal muscular activity.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrowing, twisting, and undulating: Complicated movement in shark spiral intestine inferred using ultrasound\",\"authors\":\"Taketeru Tomita , Kiyomi Murakumo , Rui Matsumoto\",\"doi\":\"10.1016/j.zool.2023.126077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shark intestine presents a complicated three-dimensional morphology, characterized by the development of a coiled internal septum. A basic question regarding the intestine is its movement. This lack of knowledge has prevented the testing of the hypothesis on its functional morphology<span>. The present study, to our knowledge, for the first time, visualized the intestinal movement of three captive sharks using an “underwater ultrasound” system. The results indicated that the movement of the shark intestine involved strong twisting. We suspect that this motion is the mechanism that tightens the coiling of the internal septum, enhancing compression of the intestinal lumen. Our data also revealed the presence of active undulatory movement of the internal septum, of which the undulatory wave propagated in the opposite (anal-to-oral) direction. We hypothesize that this motion decreases the flow rate of the digesta and increases absorptive time. These observations indicate that the kinematics of the shark spiral intestine are more complicated than expected based on morphology, and the fluid flow in the intestine is likely highly regulated by intestinal muscular activity.</span></p></div>\",\"PeriodicalId\":49330,\"journal\":{\"name\":\"Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944200623000107\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200623000107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Narrowing, twisting, and undulating: Complicated movement in shark spiral intestine inferred using ultrasound
Shark intestine presents a complicated three-dimensional morphology, characterized by the development of a coiled internal septum. A basic question regarding the intestine is its movement. This lack of knowledge has prevented the testing of the hypothesis on its functional morphology. The present study, to our knowledge, for the first time, visualized the intestinal movement of three captive sharks using an “underwater ultrasound” system. The results indicated that the movement of the shark intestine involved strong twisting. We suspect that this motion is the mechanism that tightens the coiling of the internal septum, enhancing compression of the intestinal lumen. Our data also revealed the presence of active undulatory movement of the internal septum, of which the undulatory wave propagated in the opposite (anal-to-oral) direction. We hypothesize that this motion decreases the flow rate of the digesta and increases absorptive time. These observations indicate that the kinematics of the shark spiral intestine are more complicated than expected based on morphology, and the fluid flow in the intestine is likely highly regulated by intestinal muscular activity.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.