{"title":"评估运动、认知需求和休息对老年人视听多感觉加工的影响:一项初步研究。","authors":"Aysha Basharat, Michael Barnett-Cowan","doi":"10.1163/22134808-bja10085","DOIUrl":null,"url":null,"abstract":"<p><p>A single bout of aerobic exercise is related to positive changes in higher-order cognitive function among older adults; however, the impact of aerobic exercise on multisensory processing remains unclear. Here we assessed the effects of a single bout of aerobic exercise on commonly utilized tasks that measure audiovisual multisensory processing: response time (RT), simultaneity judgements (SJ), and temporal-order judgements (TOJ), in a pilot study. To our knowledge this is the first effort to investigate the effects of three well-controlled intervention conditions on multisensory processing: resting, completing a cognitively demanding task, and performing aerobic exercise for 20 minutes. Our results indicate that the window of time within which stimuli from different modalities are integrated and perceived as simultaneous (temporal binding window; TBW) is malleable and changes after each intervention condition for both the SJ and TOJ tasks. Specifically, the TBW consistently became narrower post exercise while consistently increasing in width post rest, suggesting that aerobic exercise may improve temporal perception precision via broad neural change rather than targeting the specific networks that subserve either the SJ or TOJ tasks individually. The results from the RT task further support our findings of malleability of the multisensory processing system, as changes in performance, as assessed through cumulative probability models, were observed after each intervention condition. An increase in integration (i.e., greater magnitude of multisensory effect) however, was only found after a single bout of aerobic exercise. Overall, our results indicate that exercise uniquely affects the central nervous system and may broadly affect multisensory processing.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":"36 3","pages":"213-262"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing the Effects of Exercise, Cognitive Demand, and Rest on Audiovisual Multisensory Processing in Older Adults: A Pilot Study.\",\"authors\":\"Aysha Basharat, Michael Barnett-Cowan\",\"doi\":\"10.1163/22134808-bja10085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A single bout of aerobic exercise is related to positive changes in higher-order cognitive function among older adults; however, the impact of aerobic exercise on multisensory processing remains unclear. Here we assessed the effects of a single bout of aerobic exercise on commonly utilized tasks that measure audiovisual multisensory processing: response time (RT), simultaneity judgements (SJ), and temporal-order judgements (TOJ), in a pilot study. To our knowledge this is the first effort to investigate the effects of three well-controlled intervention conditions on multisensory processing: resting, completing a cognitively demanding task, and performing aerobic exercise for 20 minutes. Our results indicate that the window of time within which stimuli from different modalities are integrated and perceived as simultaneous (temporal binding window; TBW) is malleable and changes after each intervention condition for both the SJ and TOJ tasks. Specifically, the TBW consistently became narrower post exercise while consistently increasing in width post rest, suggesting that aerobic exercise may improve temporal perception precision via broad neural change rather than targeting the specific networks that subserve either the SJ or TOJ tasks individually. The results from the RT task further support our findings of malleability of the multisensory processing system, as changes in performance, as assessed through cumulative probability models, were observed after each intervention condition. An increase in integration (i.e., greater magnitude of multisensory effect) however, was only found after a single bout of aerobic exercise. Overall, our results indicate that exercise uniquely affects the central nervous system and may broadly affect multisensory processing.</p>\",\"PeriodicalId\":51298,\"journal\":{\"name\":\"Multisensory Research\",\"volume\":\"36 3\",\"pages\":\"213-262\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multisensory Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1163/22134808-bja10085\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10085","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Assessing the Effects of Exercise, Cognitive Demand, and Rest on Audiovisual Multisensory Processing in Older Adults: A Pilot Study.
A single bout of aerobic exercise is related to positive changes in higher-order cognitive function among older adults; however, the impact of aerobic exercise on multisensory processing remains unclear. Here we assessed the effects of a single bout of aerobic exercise on commonly utilized tasks that measure audiovisual multisensory processing: response time (RT), simultaneity judgements (SJ), and temporal-order judgements (TOJ), in a pilot study. To our knowledge this is the first effort to investigate the effects of three well-controlled intervention conditions on multisensory processing: resting, completing a cognitively demanding task, and performing aerobic exercise for 20 minutes. Our results indicate that the window of time within which stimuli from different modalities are integrated and perceived as simultaneous (temporal binding window; TBW) is malleable and changes after each intervention condition for both the SJ and TOJ tasks. Specifically, the TBW consistently became narrower post exercise while consistently increasing in width post rest, suggesting that aerobic exercise may improve temporal perception precision via broad neural change rather than targeting the specific networks that subserve either the SJ or TOJ tasks individually. The results from the RT task further support our findings of malleability of the multisensory processing system, as changes in performance, as assessed through cumulative probability models, were observed after each intervention condition. An increase in integration (i.e., greater magnitude of multisensory effect) however, was only found after a single bout of aerobic exercise. Overall, our results indicate that exercise uniquely affects the central nervous system and may broadly affect multisensory processing.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.