Si-Qi Zhang , Ping Li , Shu-Wen He , Shao-Ying Xing , Zhi-Han Cao , Xue-Li Zhao , Cuici Sun , Zhi-Hua Li
{"title":"微塑料和三苯基锡的联合效应:来自肠-脑轴的见解","authors":"Si-Qi Zhang , Ping Li , Shu-Wen He , Shao-Ying Xing , Zhi-Han Cao , Xue-Li Zhao , Cuici Sun , Zhi-Hua Li","doi":"10.1016/j.ese.2023.100266","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (<em>Cyprinus carpio</em>) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L<sup>−1</sup> and 1 μg L<sup>−1</sup>, respectively. The effects of MPs combined with TPT on the carp gut–brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut–brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"16 ","pages":"Article 100266"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121632/pdf/main.pdf","citationCount":"2","resultStr":"{\"title\":\"Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis\",\"authors\":\"Si-Qi Zhang , Ping Li , Shu-Wen He , Shao-Ying Xing , Zhi-Han Cao , Xue-Li Zhao , Cuici Sun , Zhi-Hua Li\",\"doi\":\"10.1016/j.ese.2023.100266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (<em>Cyprinus carpio</em>) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L<sup>−1</sup> and 1 μg L<sup>−1</sup>, respectively. The effects of MPs combined with TPT on the carp gut–brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut–brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"16 \",\"pages\":\"Article 100266\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121632/pdf/main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498423000315\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000315","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis
Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (Cyprinus carpio) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L−1 and 1 μg L−1, respectively. The effects of MPs combined with TPT on the carp gut–brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut–brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.