{"title":"16S rRNA基因测序揭示了阿奇霉素治疗肺炎支原体肺炎患儿肠道菌群组成的改变。","authors":"Qiong Deng, Zhu Wang, Pengmei Wu, Hui Liang, Haixia Wu, Lirong Zhang, Jing Ying","doi":"10.2323/jgam.2022.05.004","DOIUrl":null,"url":null,"abstract":"<p><p>Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"253-261"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin.\",\"authors\":\"Qiong Deng, Zhu Wang, Pengmei Wu, Hui Liang, Haixia Wu, Lirong Zhang, Jing Ying\",\"doi\":\"10.2323/jgam.2022.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":\"68 6\",\"pages\":\"253-261\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2022.05.004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2022.05.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin.
Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.