免疫后生物制剂可增强对原发性呼吸道合胞病毒感染和继发性肺炎球菌肺炎的抵抗力。

IF 3 4区 医学 Q2 MICROBIOLOGY Beneficial microbes Pub Date : 2023-02-01 DOI:10.3920/BM2022.0118
F Raya Tonetti, M Tomokiyo, K Fukuyama, M Elean, R Ortiz Moyano, H Yamamuro, R Shibata, S Quilodran-Vega, S Kurata, J Villena, H Kitazawa
{"title":"免疫后生物制剂可增强对原发性呼吸道合胞病毒感染和继发性肺炎球菌肺炎的抵抗力。","authors":"F Raya Tonetti, M Tomokiyo, K Fukuyama, M Elean, R Ortiz Moyano, H Yamamuro, R Shibata, S Quilodran-Vega, S Kurata, J Villena, H Kitazawa","doi":"10.3920/BM2022.0118","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-β, IFN-γ, interleukin(IL) - 1β, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-β, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"209-221"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-immunobiotics increase resistance to primary respiratory syncytial virus infection and secondary pneumococcal pneumonia.\",\"authors\":\"F Raya Tonetti, M Tomokiyo, K Fukuyama, M Elean, R Ortiz Moyano, H Yamamuro, R Shibata, S Quilodran-Vega, S Kurata, J Villena, H Kitazawa\",\"doi\":\"10.3920/BM2022.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-β, IFN-γ, interleukin(IL) - 1β, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-β, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"209-221\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3920/BM2022.0118\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3920/BM2022.0118","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

此前,我们曾证实,从加塞乳杆菌 TMT36、TMT39 和 TMT40 株(分别为 HK36、HK39 和 HK40)中提取的免疫后生物素可对婴幼儿小鼠的 Toll 样受体 3(TLR3)介导的抗病毒呼吸道免疫进行不同程度的调节。在这项工作中,我们研究了 HK36、HK39 和 HK40 的鼻腔治疗是否能提高小鼠对原发性呼吸道合胞病毒(RSV)感染和继发性肺炎球菌肺炎的抵抗力。我们的研究结果表明,这三种治疗方法通过减少受感染幼鼠的体重、RSV 滴度和肺损伤的变化,提高了其对原发性病毒感染的抵抗力。免疫后生物制剂可显著提高干扰素(IFN)-λ、IFN-β、IFN-γ、白细胞介素(IL)-1β、IL-6、IL-27、Mx1、RNAseL 和 2'-5'-oligoadenylate synthetase 1 (OAS1) 基因的表达,并降低 RSV 感染小鼠肺泡巨噬细胞中肿瘤坏死因子(TNF)-α 的表达。此外,在 RSV-肺炎链球菌超级感染模型中进行的研究表明,HK39 和 HK40 治疗能够减少肺损伤、肺部细菌细胞计数以及肺炎链球菌在婴儿小鼠血液中的传播。这种保护作用与呼吸道中 IFN-β、IFN-γ、IL-10 和 IL-27 的增加有关。这项研究表明,鼻腔应用后免疫生物制剂 HK39 和 HK40 可刺激先天性呼吸道免疫,增强对原发性 RSV 感染和继发性肺炎球菌肺炎的防御能力,为防治可能致命的儿童呼吸道超级感染提供了一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Post-immunobiotics increase resistance to primary respiratory syncytial virus infection and secondary pneumococcal pneumonia.

Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-β, IFN-γ, interleukin(IL) - 1β, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-β, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
期刊最新文献
Aerobic bacterial group as an early-stage biomarker from faecal samples of patients with colorectal cancer without distant metastasis. Effects of Limosilactobacillus reuteri DSM 17938 in neonates exposed to antibiotics: a randomised controlled trial. In vitro validation of colon delivery of vitamin B2 through a food grade multi-unit particle system. Oral supplementation of heat-killed Enterococcus faecalis strain EC-12 relieves gastrointestinal discomfort and alters the gut microecology in academically stressed students. Impact of two human milk oligosaccharides and lactose on the faecal microbiome of infants with probable cow's milk allergy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1