独特变量分析:一种检测局部依赖性的网络心理计量学方法。

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2023-11-01 Epub Date: 2023-05-04 DOI:10.1080/00273171.2023.2194606
Alexander P Christensen, Luis Eduardo Garrido, Hudson Golino
{"title":"独特变量分析:一种检测局部依赖性的网络心理计量学方法。","authors":"Alexander P Christensen, Luis Eduardo Garrido, Hudson Golino","doi":"10.1080/00273171.2023.2194606","DOIUrl":null,"url":null,"abstract":"<p><p>The local independence assumption states that variables are unrelated after conditioning on a latent variable. Common problems that arise from violations of this assumption include model misspecification, biased model parameters, and inaccurate estimates of internal structure. These problems are not limited to latent variable models but also apply to network psychometrics. This paper proposes a novel network psychometric approach to detect locally dependent pairs of variables using network modeling and a graph theory measure called weighted topological overlap (wTO). Using simulation, this approach is compared to contemporary local dependence detection methods such as exploratory structural equation modeling with standardized expected parameter change and a recently developed approach using partial correlations and a resampling procedure. Different approaches to determine local dependence using statistical significance and cutoff values are also compared. Continuous, polytomous (5-point Likert scale), and dichotomous (binary) data were generated with skew across a variety of conditions. Our results indicate that cutoff values work better than significance approaches. Overall, the network psychometrics approaches using wTO with graphical least absolute shrinkage and selector operator with extended Bayesian information criterion and wTO with Bayesian Gaussian graphical model were the best performing local dependence detection methods overall.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1165-1182"},"PeriodicalIF":5.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Unique Variable Analysis: A Network Psychometrics Method to Detect Local Dependence.\",\"authors\":\"Alexander P Christensen, Luis Eduardo Garrido, Hudson Golino\",\"doi\":\"10.1080/00273171.2023.2194606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The local independence assumption states that variables are unrelated after conditioning on a latent variable. Common problems that arise from violations of this assumption include model misspecification, biased model parameters, and inaccurate estimates of internal structure. These problems are not limited to latent variable models but also apply to network psychometrics. This paper proposes a novel network psychometric approach to detect locally dependent pairs of variables using network modeling and a graph theory measure called weighted topological overlap (wTO). Using simulation, this approach is compared to contemporary local dependence detection methods such as exploratory structural equation modeling with standardized expected parameter change and a recently developed approach using partial correlations and a resampling procedure. Different approaches to determine local dependence using statistical significance and cutoff values are also compared. Continuous, polytomous (5-point Likert scale), and dichotomous (binary) data were generated with skew across a variety of conditions. Our results indicate that cutoff values work better than significance approaches. Overall, the network psychometrics approaches using wTO with graphical least absolute shrinkage and selector operator with extended Bayesian information criterion and wTO with Bayesian Gaussian graphical model were the best performing local dependence detection methods overall.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1165-1182\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2023.2194606\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2194606","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8

摘要

局部独立假设是指变量在以潜在变量为条件后是不相关的。违反这一假设所产生的常见问题包括模型不规范、模型参数有偏差以及对内部结构的估计不准确。这些问题不仅限于潜变量模型,也适用于网络心理测量学。本文提出了一种新颖的网络心理测量方法,利用网络建模和一种称为加权拓扑重叠(wTO)的图论测量方法来检测局部依赖变量对。通过模拟,本文将这种方法与当代的局部依赖性检测方法进行了比较,如采用标准化预期参数变化的探索性结构方程建模,以及最近开发的一种使用偏相关性和重采样程序的方法。此外,还比较了使用统计显著性和截断值确定局部依赖性的不同方法。我们生成了连续、多态(5 点李克特量表)和二态(二进制)数据,这些数据在各种条件下都有偏差。结果表明,截止值比显著性方法更有效。总体而言,使用具有图形最小绝对收缩的 wTO 和具有扩展贝叶斯信息准则的选择算子的网络心理计量学方法,以及具有贝叶斯高斯图形模型的 wTO 是总体上表现最好的局部依赖性检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unique Variable Analysis: A Network Psychometrics Method to Detect Local Dependence.

The local independence assumption states that variables are unrelated after conditioning on a latent variable. Common problems that arise from violations of this assumption include model misspecification, biased model parameters, and inaccurate estimates of internal structure. These problems are not limited to latent variable models but also apply to network psychometrics. This paper proposes a novel network psychometric approach to detect locally dependent pairs of variables using network modeling and a graph theory measure called weighted topological overlap (wTO). Using simulation, this approach is compared to contemporary local dependence detection methods such as exploratory structural equation modeling with standardized expected parameter change and a recently developed approach using partial correlations and a resampling procedure. Different approaches to determine local dependence using statistical significance and cutoff values are also compared. Continuous, polytomous (5-point Likert scale), and dichotomous (binary) data were generated with skew across a variety of conditions. Our results indicate that cutoff values work better than significance approaches. Overall, the network psychometrics approaches using wTO with graphical least absolute shrinkage and selector operator with extended Bayesian information criterion and wTO with Bayesian Gaussian graphical model were the best performing local dependence detection methods overall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data. Quantifying Evidence for-and against-Granger Causality with Bayes Factors. Person Specific Parameter Heterogeneity in the 2PL IRT Model. Environment-by-PGS Interaction in the Classical Twin Design: An Application to Childhood Anxiety and Negative Affect. Homogeneity Assumptions in the Analysis of Dynamic Processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1