对局部扰动的集体反应:如何在不失去连贯性的情况下逃避威胁。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2023-04-11 DOI:10.1088/1478-3975/acc5cc
Emanuele Loffredo, Davide Venturelli, Irene Giardina
{"title":"对局部扰动的集体反应:如何在不失去连贯性的情况下逃避威胁。","authors":"Emanuele Loffredo,&nbsp;Davide Venturelli,&nbsp;Irene Giardina","doi":"10.1088/1478-3975/acc5cc","DOIUrl":null,"url":null,"abstract":"<p><p>Living groups move in complex environments and are constantly subject to external stimuli, predatory attacks and disturbances. An efficient response to such perturbations is vital to maintain the group's coherence and cohesion. Perturbations are often local, i.e. they are initially perceived only by few individuals in the group, but can elicit a global response. This is the case of starling flocks, that can turn very quickly to evade predators. In this paper, we investigate the conditions under which a global change of direction can occur upon local perturbations. Using minimal models of self-propelled particles, we show that a collective directional response occurs on timescales that grow with the system size and it is, therefore, a finite-size effect. The larger the group is, the longer it will take to turn. We also show that global coherent turns can only take place if i) the mechanism for information propagation is efficient enough to transmit the local reaction undamped through the whole group; and if ii) motility is not too strong, to avoid that the perturbed individual leaves the group before the turn is complete. No compliance with such conditions results in the group's fragmentation or in a non-efficient response.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collective response to local perturbations: how to evade threats without losing coherence.\",\"authors\":\"Emanuele Loffredo,&nbsp;Davide Venturelli,&nbsp;Irene Giardina\",\"doi\":\"10.1088/1478-3975/acc5cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Living groups move in complex environments and are constantly subject to external stimuli, predatory attacks and disturbances. An efficient response to such perturbations is vital to maintain the group's coherence and cohesion. Perturbations are often local, i.e. they are initially perceived only by few individuals in the group, but can elicit a global response. This is the case of starling flocks, that can turn very quickly to evade predators. In this paper, we investigate the conditions under which a global change of direction can occur upon local perturbations. Using minimal models of self-propelled particles, we show that a collective directional response occurs on timescales that grow with the system size and it is, therefore, a finite-size effect. The larger the group is, the longer it will take to turn. We also show that global coherent turns can only take place if i) the mechanism for information propagation is efficient enough to transmit the local reaction undamped through the whole group; and if ii) motility is not too strong, to avoid that the perturbed individual leaves the group before the turn is complete. No compliance with such conditions results in the group's fragmentation or in a non-efficient response.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/acc5cc\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acc5cc","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

生活群体在复杂的环境中活动,不断受到外界刺激、掠食性攻击和干扰。对这种扰动的有效反应对于保持团队的一致性和凝聚力至关重要。扰动通常是局部的,即它们最初只被群体中的少数个体感知,但可以引起全局反应。这就是椋鸟群的情况,它们可以非常迅速地转身躲避捕食者。在本文中,我们研究了局部扰动下可能发生全局方向变化的条件。使用自推进粒子的最小模型,我们表明,集体定向响应发生在随系统大小增长的时间尺度上,因此,它是一个有限大小的效应。群体越大,转变所需的时间就越长。我们还证明,只有当i)信息传播机制足够有效,将局部反应无阻尼地传递到整个群体时,才能发生全局相干转弯;如果ii)运动性不太强,避免受干扰的个体在转弯完成前离开群体。如果不遵守这些条件,就会导致群体分裂或反应效率低下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collective response to local perturbations: how to evade threats without losing coherence.

Living groups move in complex environments and are constantly subject to external stimuli, predatory attacks and disturbances. An efficient response to such perturbations is vital to maintain the group's coherence and cohesion. Perturbations are often local, i.e. they are initially perceived only by few individuals in the group, but can elicit a global response. This is the case of starling flocks, that can turn very quickly to evade predators. In this paper, we investigate the conditions under which a global change of direction can occur upon local perturbations. Using minimal models of self-propelled particles, we show that a collective directional response occurs on timescales that grow with the system size and it is, therefore, a finite-size effect. The larger the group is, the longer it will take to turn. We also show that global coherent turns can only take place if i) the mechanism for information propagation is efficient enough to transmit the local reaction undamped through the whole group; and if ii) motility is not too strong, to avoid that the perturbed individual leaves the group before the turn is complete. No compliance with such conditions results in the group's fragmentation or in a non-efficient response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1