Aarit Ahuja, Theresa M Desrochers, David L Sheinberg
{"title":"视觉区域在物理模拟中的作用","authors":"Aarit Ahuja, Theresa M Desrochers, David L Sheinberg","doi":"10.1080/02643294.2022.2034609","DOIUrl":null,"url":null,"abstract":"<p><p>To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do we make these predictions? Recent computational evidence points to simulation-the idea that we can introspectively manipulate rich, mental models of the world-as one explanation for how such predictions are accomplished. However, questions about the potential neural mechanisms of simulation remain. We hypothesized that the process of simulating physical events would evoke imagery-like representations in visual areas of those same events. Using functional magnetic resonance imaging, we find that when participants are asked to predict the likely trajectory of a falling ball, motion-sensitive brain regions are activated. We demonstrate that this activity, which occurs even though no motion is being sensed, resembles activity patterns that arise while participants perceive the ball's motion. This finding thus suggests that mental simulations recreate sensory depictions of how a physical scene is likely to unfold.</p>","PeriodicalId":50670,"journal":{"name":"Cognitive Neuropsychology","volume":"38 7-8","pages":"425-439"},"PeriodicalIF":2.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374848/pdf/nihms-1776455.pdf","citationCount":"0","resultStr":"{\"title\":\"A role for visual areas in physics simulations.\",\"authors\":\"Aarit Ahuja, Theresa M Desrochers, David L Sheinberg\",\"doi\":\"10.1080/02643294.2022.2034609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do we make these predictions? Recent computational evidence points to simulation-the idea that we can introspectively manipulate rich, mental models of the world-as one explanation for how such predictions are accomplished. However, questions about the potential neural mechanisms of simulation remain. We hypothesized that the process of simulating physical events would evoke imagery-like representations in visual areas of those same events. Using functional magnetic resonance imaging, we find that when participants are asked to predict the likely trajectory of a falling ball, motion-sensitive brain regions are activated. We demonstrate that this activity, which occurs even though no motion is being sensed, resembles activity patterns that arise while participants perceive the ball's motion. This finding thus suggests that mental simulations recreate sensory depictions of how a physical scene is likely to unfold.</p>\",\"PeriodicalId\":50670,\"journal\":{\"name\":\"Cognitive Neuropsychology\",\"volume\":\"38 7-8\",\"pages\":\"425-439\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374848/pdf/nihms-1776455.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuropsychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/02643294.2022.2034609\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuropsychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/02643294.2022.2034609","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do we make these predictions? Recent computational evidence points to simulation-the idea that we can introspectively manipulate rich, mental models of the world-as one explanation for how such predictions are accomplished. However, questions about the potential neural mechanisms of simulation remain. We hypothesized that the process of simulating physical events would evoke imagery-like representations in visual areas of those same events. Using functional magnetic resonance imaging, we find that when participants are asked to predict the likely trajectory of a falling ball, motion-sensitive brain regions are activated. We demonstrate that this activity, which occurs even though no motion is being sensed, resembles activity patterns that arise while participants perceive the ball's motion. This finding thus suggests that mental simulations recreate sensory depictions of how a physical scene is likely to unfold.
期刊介绍:
Cognitive Neuropsychology is of interest to cognitive scientists and neuroscientists, neuropsychologists, neurologists, psycholinguists, speech pathologists, physiotherapists, and psychiatrists.