攀爬究竟意味着什么?评估鹦鹉倾斜运动的时空步态特征

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology Pub Date : 2024-01-01 Epub Date: 2023-05-04 DOI:10.1007/s00359-023-01630-0
Melody W Young, Clyde Webster, Daniel Tanis, Alissa F Schurr, Christopher S Hanna, Samantha K Lynch, Aleksandra S Ratkiewicz, Edwin Dickinson, Felix H Kong, Michael C Granatosky
{"title":"攀爬究竟意味着什么?评估鹦鹉倾斜运动的时空步态特征","authors":"Melody W Young, Clyde Webster, Daniel Tanis, Alissa F Schurr, Christopher S Hanna, Samantha K Lynch, Aleksandra S Ratkiewicz, Edwin Dickinson, Felix H Kong, Michael C Granatosky","doi":"10.1007/s00359-023-01630-0","DOIUrl":null,"url":null,"abstract":"<p><p>At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly \"climbing\" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots.\",\"authors\":\"Melody W Young, Clyde Webster, Daniel Tanis, Alissa F Schurr, Christopher S Hanna, Samantha K Lynch, Aleksandra S Ratkiewicz, Edwin Dickinson, Felix H Kong, Michael C Granatosky\",\"doi\":\"10.1007/s00359-023-01630-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly \\\"climbing\\\" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-023-01630-0\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01630-0","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

攀爬是从哪个倾角开始的?在本文中,我们研究了两种鹦鹉(Agapornis roseicollis和Nymphicus hollandicus)从行走到攀爬的过渡过程,已知这两种鹦鹉在垂直攀爬过程中将尾巴和颅颈系统纳入步态周期。在0°至90°的角度范围内,观察到A. roseicollis和N. hollandicus的运动行为倾角分别为45°至85°。两个物种在45°倾角时都能观察到尾部的使用,在更高倾角(> 65°)时,尾部的使用与颅颈系统的使用结合在一起。此外,当倾角接近(但仍低于)90°时,运动速度降低,同时步态具有较高的占空比和较低的步频。这些步态变化与那些被认为能提高稳定性的步态变化是一致的。在 90° 角时,A. roseicollis 明显增加了步长,从而提高了整体运动速度。这些数据共同表明,水平行走和垂直攀爬之间的过渡是渐进的,随着倾角的增加,步态的几个组成部分也会逐渐发生变化。这些数据突出表明,有必要进一步研究 "攀爬 "究竟是如何定义的,以及这种行为区别于水平行走的具体运动特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots.

At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly "climbing" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
期刊最新文献
Novel nerve regeneration assessment method using adult zebrafish with crush spinal cord injury. Shelter selection in females of two scorpion species depends on shelter size and scent. Perceptually salient differences in a species recognition cue do not promote auditory streaming in eastern grey treefrogs (Hyla versicolor). The effects of doxapram and its potential interactions with K2P channels in experimental model preparations. A versatile recording device for the analysis of continuous daily external activity in colonies of highly eusocial bees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1