Alberto Plaza;Mar Hernandez;Gonzalo Puyuelo;Elena Garces;Elena Garcia
{"title":"下肢医疗和康复外骨骼:当前设计综述","authors":"Alberto Plaza;Mar Hernandez;Gonzalo Puyuelo;Elena Garces;Elena Garcia","doi":"10.1109/RBME.2021.3078001","DOIUrl":null,"url":null,"abstract":"Medical and rehabilitation exoskeletons are being increasingly considered by therapists when choosing a treatment for individuals affected by lower limb impairments. Although all such exoskeletons seem to provide similar features and performance, there are, in practice, significant differences among them in terms of maximum walking speed, maximum torque, weight, autonomy, interaction with the user, or even the way to use it. In this review, the state of the art of the main commercial exoskeletons is described, while analyzing their properties, advantages, and disadvantages. Three groups are considered: complete exoskeletons, partial exoskeletons and open lines of research. A comparative analysis between them is performed while considering the main scientific and technical aspects to be improved. In conclusion to this analysis, the balance between feasibility and innovation in exoskeletons development is a design challenge. Commercial exoskeletons must fulfil standards whilst ensuring their safety and robustness. However, achieving a new generation of exoskeletons means a need to implement new hardware paradigms, and to enhance control strategies focused on assist-as-needed scheme. Finally, some aspects to improve current designs of the exoskeleton are presented.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"278-291"},"PeriodicalIF":17.2000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RBME.2021.3078001","citationCount":"23","resultStr":"{\"title\":\"Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs\",\"authors\":\"Alberto Plaza;Mar Hernandez;Gonzalo Puyuelo;Elena Garces;Elena Garcia\",\"doi\":\"10.1109/RBME.2021.3078001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical and rehabilitation exoskeletons are being increasingly considered by therapists when choosing a treatment for individuals affected by lower limb impairments. Although all such exoskeletons seem to provide similar features and performance, there are, in practice, significant differences among them in terms of maximum walking speed, maximum torque, weight, autonomy, interaction with the user, or even the way to use it. In this review, the state of the art of the main commercial exoskeletons is described, while analyzing their properties, advantages, and disadvantages. Three groups are considered: complete exoskeletons, partial exoskeletons and open lines of research. A comparative analysis between them is performed while considering the main scientific and technical aspects to be improved. In conclusion to this analysis, the balance between feasibility and innovation in exoskeletons development is a design challenge. Commercial exoskeletons must fulfil standards whilst ensuring their safety and robustness. However, achieving a new generation of exoskeletons means a need to implement new hardware paradigms, and to enhance control strategies focused on assist-as-needed scheme. Finally, some aspects to improve current designs of the exoskeleton are presented.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"16 \",\"pages\":\"278-291\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/RBME.2021.3078001\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9425437/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9425437/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs
Medical and rehabilitation exoskeletons are being increasingly considered by therapists when choosing a treatment for individuals affected by lower limb impairments. Although all such exoskeletons seem to provide similar features and performance, there are, in practice, significant differences among them in terms of maximum walking speed, maximum torque, weight, autonomy, interaction with the user, or even the way to use it. In this review, the state of the art of the main commercial exoskeletons is described, while analyzing their properties, advantages, and disadvantages. Three groups are considered: complete exoskeletons, partial exoskeletons and open lines of research. A comparative analysis between them is performed while considering the main scientific and technical aspects to be improved. In conclusion to this analysis, the balance between feasibility and innovation in exoskeletons development is a design challenge. Commercial exoskeletons must fulfil standards whilst ensuring their safety and robustness. However, achieving a new generation of exoskeletons means a need to implement new hardware paradigms, and to enhance control strategies focused on assist-as-needed scheme. Finally, some aspects to improve current designs of the exoskeleton are presented.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.