{"title":"深度学习与放射基因组学实现胶质瘤的个性化管理","authors":"Sushmita Mitra","doi":"10.1109/RBME.2021.3075500","DOIUrl":null,"url":null,"abstract":"A state-of-the-art interdisciplinary survey on multi-modal radiogenomic approaches is presented involving applications to the diagnosis and personalized management of gliomas a common kind of brain tumors through noninvasive imaging integrated with genomic information. It encompasses mining tumor radioimages employing deep learning for the automated extraction of relevant features from the segmented volume of interest (VOI). Gene expression values from surgically extracted tumor tissues are often simultaneously analyzed to determine patient specific features. Association between genomic and radiomic features are also explored in some cases to determine the imaging surrogates. Deep learning and transfer learning are typically exploited for efficient knowledge discovery and decision-making. Some studies on survival prediction ensemble learning and interactive learning are also included. The literature mainly focuses on magnetic resonance imaging (MRI) data of the brain for learning and validation and generally involves the NIH TCIA and TCGA repositories as well as the BraTS Challenge databases.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"579-593"},"PeriodicalIF":17.2000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RBME.2021.3075500","citationCount":"2","resultStr":"{\"title\":\"Deep Learning With Radiogenomics Towards Personalized Management of Gliomas\",\"authors\":\"Sushmita Mitra\",\"doi\":\"10.1109/RBME.2021.3075500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A state-of-the-art interdisciplinary survey on multi-modal radiogenomic approaches is presented involving applications to the diagnosis and personalized management of gliomas a common kind of brain tumors through noninvasive imaging integrated with genomic information. It encompasses mining tumor radioimages employing deep learning for the automated extraction of relevant features from the segmented volume of interest (VOI). Gene expression values from surgically extracted tumor tissues are often simultaneously analyzed to determine patient specific features. Association between genomic and radiomic features are also explored in some cases to determine the imaging surrogates. Deep learning and transfer learning are typically exploited for efficient knowledge discovery and decision-making. Some studies on survival prediction ensemble learning and interactive learning are also included. The literature mainly focuses on magnetic resonance imaging (MRI) data of the brain for learning and validation and generally involves the NIH TCIA and TCGA repositories as well as the BraTS Challenge databases.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"16 \",\"pages\":\"579-593\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/RBME.2021.3075500\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9416142/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9416142/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Deep Learning With Radiogenomics Towards Personalized Management of Gliomas
A state-of-the-art interdisciplinary survey on multi-modal radiogenomic approaches is presented involving applications to the diagnosis and personalized management of gliomas a common kind of brain tumors through noninvasive imaging integrated with genomic information. It encompasses mining tumor radioimages employing deep learning for the automated extraction of relevant features from the segmented volume of interest (VOI). Gene expression values from surgically extracted tumor tissues are often simultaneously analyzed to determine patient specific features. Association between genomic and radiomic features are also explored in some cases to determine the imaging surrogates. Deep learning and transfer learning are typically exploited for efficient knowledge discovery and decision-making. Some studies on survival prediction ensemble learning and interactive learning are also included. The literature mainly focuses on magnetic resonance imaging (MRI) data of the brain for learning and validation and generally involves the NIH TCIA and TCGA repositories as well as the BraTS Challenge databases.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.