混合模型的贝叶斯因子:反应视角

Computational brain & behavior Pub Date : 2023-01-01 Epub Date: 2023-02-14 DOI:10.1007/s42113-022-00158-x
Johnny van Doorn, Frederik Aust, Julia M Haaf, Angelika M Stefan, Eric-Jan Wagenmakers
{"title":"混合模型的贝叶斯因子:反应视角","authors":"Johnny van Doorn, Frederik Aust, Julia M Haaf, Angelika M Stefan, Eric-Jan Wagenmakers","doi":"10.1007/s42113-022-00158-x","DOIUrl":null,"url":null,"abstract":"<p><p>In van Doorn et al. (2021), we outlined a series of open questions concerning Bayes factors for mixed effects model comparison, with an emphasis on the impact of aggregation, the effect of measurement error, the choice of prior distributions, and the detection of interactions. Seven expert commentaries (partially) addressed these initial questions. Surprisingly perhaps, the experts disagreed (often strongly) on what is best practice-a testament to the intricacy of conducting a mixed effect model comparison. Here, we provide our perspective on these comments and highlight topics that warrant further discussion. In general, we agree with many of the commentaries that in order to take full advantage of Bayesian mixed model comparison, it is important to be aware of the specific assumptions that underlie the to-be-compared models.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"6 1","pages":"127-139"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981503/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayes Factors for Mixed Models: Perspective on Responses.\",\"authors\":\"Johnny van Doorn, Frederik Aust, Julia M Haaf, Angelika M Stefan, Eric-Jan Wagenmakers\",\"doi\":\"10.1007/s42113-022-00158-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In van Doorn et al. (2021), we outlined a series of open questions concerning Bayes factors for mixed effects model comparison, with an emphasis on the impact of aggregation, the effect of measurement error, the choice of prior distributions, and the detection of interactions. Seven expert commentaries (partially) addressed these initial questions. Surprisingly perhaps, the experts disagreed (often strongly) on what is best practice-a testament to the intricacy of conducting a mixed effect model comparison. Here, we provide our perspective on these comments and highlight topics that warrant further discussion. In general, we agree with many of the commentaries that in order to take full advantage of Bayesian mixed model comparison, it is important to be aware of the specific assumptions that underlie the to-be-compared models.</p>\",\"PeriodicalId\":72660,\"journal\":{\"name\":\"Computational brain & behavior\",\"volume\":\"6 1\",\"pages\":\"127-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981503/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational brain & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42113-022-00158-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-022-00158-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 van Doorn 等人(2021 年)的文章中,我们概述了有关混合效应模型比较的贝叶斯因子的一系列开放性问题,重点是聚合的影响、测量误差的影响、先验分布的选择以及交互作用的检测。七份专家评论(部分)涉及了这些初步问题。出人意料的是,专家们对最佳做法的意见并不一致(通常是强烈的意见不一致),这证明了进行混合效应模型比较的复杂性。在此,我们将对这些意见提出自己的看法,并强调值得进一步讨论的话题。总的来说,我们同意许多评论的观点,即要充分利用贝叶斯混合模型比较的优势,就必须了解作为待比较模型基础的具体假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayes Factors for Mixed Models: Perspective on Responses.

In van Doorn et al. (2021), we outlined a series of open questions concerning Bayes factors for mixed effects model comparison, with an emphasis on the impact of aggregation, the effect of measurement error, the choice of prior distributions, and the detection of interactions. Seven expert commentaries (partially) addressed these initial questions. Surprisingly perhaps, the experts disagreed (often strongly) on what is best practice-a testament to the intricacy of conducting a mixed effect model comparison. Here, we provide our perspective on these comments and highlight topics that warrant further discussion. In general, we agree with many of the commentaries that in order to take full advantage of Bayesian mixed model comparison, it is important to be aware of the specific assumptions that underlie the to-be-compared models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI Towards Dependent Race Models for the Stop-Signal Paradigm Modeling Time Cell Neuron-Level Dynamics Probabilistic Choice Induced by Strength of Preference An Extension and Clinical Application of the SIMPLE Model to the Free Recall of Repeated and Semantically Related Items
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1