Jadupati Malakar, Amit Kumar Nayak, Soumita Goswami
{"title":"响应面法在富马酸比索洛尔基质缓释片处方优选中的应用。","authors":"Jadupati Malakar, Amit Kumar Nayak, Soumita Goswami","doi":"10.5402/2012/730624","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this investigation was to develop and optimize bisoprolol fumarate matrix tablets for sustained release application by response surface methodology based on 2(3) factorial design. The effects of the amounts of calcium alginate, HPMC K4M, and Carbopol 943 in bisoprolol fumarate matrix tablets on the properties of bisoprolol fumarate sustained release matrix tablets like drug release and hardness were analyzed and optimized. The observed responses were coincided well with the predicted values by the experimental design. The optimized bisoprolol fumarate matrix tablets showed prolonged sustained release of bisoprolol fumarate over 6 hours. These matrix tablets followed the first-order model with anomalous (non-Fickian) diffusion mechanism.</p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2012 ","pages":"730624"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5402/2012/730624","citationCount":"45","resultStr":"{\"title\":\"Use of response surface methodology in the formulation and optimization of bisoprolol fumarate matrix tablets for sustained drug release.\",\"authors\":\"Jadupati Malakar, Amit Kumar Nayak, Soumita Goswami\",\"doi\":\"10.5402/2012/730624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this investigation was to develop and optimize bisoprolol fumarate matrix tablets for sustained release application by response surface methodology based on 2(3) factorial design. The effects of the amounts of calcium alginate, HPMC K4M, and Carbopol 943 in bisoprolol fumarate matrix tablets on the properties of bisoprolol fumarate sustained release matrix tablets like drug release and hardness were analyzed and optimized. The observed responses were coincided well with the predicted values by the experimental design. The optimized bisoprolol fumarate matrix tablets showed prolonged sustained release of bisoprolol fumarate over 6 hours. These matrix tablets followed the first-order model with anomalous (non-Fickian) diffusion mechanism.</p>\",\"PeriodicalId\":14802,\"journal\":{\"name\":\"ISRN Pharmaceutics\",\"volume\":\"2012 \",\"pages\":\"730624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5402/2012/730624\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2012/730624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2012/730624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of response surface methodology in the formulation and optimization of bisoprolol fumarate matrix tablets for sustained drug release.
The aim of this investigation was to develop and optimize bisoprolol fumarate matrix tablets for sustained release application by response surface methodology based on 2(3) factorial design. The effects of the amounts of calcium alginate, HPMC K4M, and Carbopol 943 in bisoprolol fumarate matrix tablets on the properties of bisoprolol fumarate sustained release matrix tablets like drug release and hardness were analyzed and optimized. The observed responses were coincided well with the predicted values by the experimental design. The optimized bisoprolol fumarate matrix tablets showed prolonged sustained release of bisoprolol fumarate over 6 hours. These matrix tablets followed the first-order model with anomalous (non-Fickian) diffusion mechanism.