The current research work involves preparation of fast dissolving tablets of Aceclofenac by direct compression method using different concentrations of Lepidium sativum mucilage as natural superdisintegrant. A two-factor three-level (3(2)) factorial design is being used to optimize the formulation. Nine formulation batches (D1-D9) were prepared accordingly. Two factors as independent variables (X 1-amount of β-cyclodextrin and X 2-amount of Lepidium sativum mucilage) were taken with three levels (+1, 0, -1). The levels of two factors were selected on the basis of preliminary experiments conducted and their effect on three dependent variables (disintegration time, wetting time, and in vitro drug release) was studied along with their % prediction error. All the active blends were evaluated for postcompression parameters (angle of repose, Carr's index, Hausner ratio, etc.) and the tablets were evaluated for postcompression parameters (weight variation, hardness, and friability, wetting time, disintegration time, water absorption ratio, and in vitro drug release studies). The optimum batch was further used for SEM and stability studies. Formulation D5 was selected by the Design-Expert software which exhibited DT (15.5 sec), WT (18.94 sec), and in vitro drug release (100%) within 15 minutes.
{"title":"Formulation development and optimization of fast dissolving tablets of aceclofenac using natural superdisintegrant.","authors":"Lovleen Kaur, Rajni Bala, Neha Kanojia, Manju Nagpal, Gitika Arora Dhingra","doi":"10.1155/2014/242504","DOIUrl":"10.1155/2014/242504","url":null,"abstract":"<p><p>The current research work involves preparation of fast dissolving tablets of Aceclofenac by direct compression method using different concentrations of Lepidium sativum mucilage as natural superdisintegrant. A two-factor three-level (3(2)) factorial design is being used to optimize the formulation. Nine formulation batches (D1-D9) were prepared accordingly. Two factors as independent variables (X 1-amount of β-cyclodextrin and X 2-amount of Lepidium sativum mucilage) were taken with three levels (+1, 0, -1). The levels of two factors were selected on the basis of preliminary experiments conducted and their effect on three dependent variables (disintegration time, wetting time, and in vitro drug release) was studied along with their % prediction error. All the active blends were evaluated for postcompression parameters (angle of repose, Carr's index, Hausner ratio, etc.) and the tablets were evaluated for postcompression parameters (weight variation, hardness, and friability, wetting time, disintegration time, water absorption ratio, and in vitro drug release studies). The optimum batch was further used for SEM and stability studies. Formulation D5 was selected by the Design-Expert software which exhibited DT (15.5 sec), WT (18.94 sec), and in vitro drug release (100%) within 15 minutes. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2014 ","pages":"242504"},"PeriodicalIF":0.0,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32438742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-09eCollection Date: 2014-01-01DOI: 10.1155/2014/926157
Alejandro Sosnik
Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future.
{"title":"Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art.","authors":"Alejandro Sosnik","doi":"10.1155/2014/926157","DOIUrl":"10.1155/2014/926157","url":null,"abstract":"<p><p>Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2014 ","pages":"926157"},"PeriodicalIF":0.0,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/926157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32567460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-08eCollection Date: 2014-01-01DOI: 10.1155/2014/391523
Teresa Nabais, Grégoire Leclair
Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol.
{"title":"High-amylose sodium carboxymethyl starch matrices: development and characterization of tramadol hydrochloride sustained-release tablets for oral administration.","authors":"Teresa Nabais, Grégoire Leclair","doi":"10.1155/2014/391523","DOIUrl":"https://doi.org/10.1155/2014/391523","url":null,"abstract":"<p><p>Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2014 ","pages":"391523"},"PeriodicalIF":0.0,"publicationDate":"2014-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/391523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32491356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-03-04eCollection Date: 2014-01-01DOI: 10.1155/2014/647174
Sudarshan Singh, Sunil B Bothara
Mucilage isolated from seeds of Manilkara zapota (Linn.) P. Royen syn. is a plant growing naturally in the forests of India. This mucilage is yet to be commercially exploited, and characterized as polymer. Various physicochemical methods like particle size analysis, scanning electron microscopy, thermal analysis, gel permeation chromatography, X-ray diffraction spectrometry, zeta potential, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy have been employed to characterize this gum in the present study. Particle size analyses suggest that mucilage has particle size in nanometer. Scanning electron microscopy analysis suggests that the mucilage has irregular particle size. The glass transition temperature of the gum was observed to be 138°C and 136°C by differential scanning calorimetry and differential thermal analysis, respectively. The thermogravimetric analysis suggested that mucilage had good thermal stability. The average molecular weight of mucilage was determined to be 379180, by gel permeation chromatography, while the viscosity of mucilage was observed to be 219.1 cP. The X-ray diffraction spectrometry pattern of the mucilage indicates a completely amorphous structure. Elemental analysis of the gum revealed the contents of carbon, hydrogen, nitrogen, and sulfur to be 80.9 (%), 10.1 (%), 1.58 (%), and 512 (mg/kg), respectively. Mucilage had specific content of calcium, magnesium, potassium, lower concentrations of aluminum, cadmium, cobalt, lead, and nickel. The major functional groups identified from FT-IR spectrum include 3441 cm(-1) (-OH), 1660 cm(-1) (Alkenyl C-H & C=C Stretch), 1632 cm(-1) (-COO-), 1414 cm(-1) (-COO-), and 1219 cm(-1) (-CH3CO). Analysis of mucilage by paper chromatography and 1D NMR, indicated the presence of rhamnose, xylose, arabinose, mannose, and fructose.
{"title":"Manilkara zapota (Linn.) Seeds: A Potential Source of Natural Gum.","authors":"Sudarshan Singh, Sunil B Bothara","doi":"10.1155/2014/647174","DOIUrl":"https://doi.org/10.1155/2014/647174","url":null,"abstract":"<p><p>Mucilage isolated from seeds of Manilkara zapota (Linn.) P. Royen syn. is a plant growing naturally in the forests of India. This mucilage is yet to be commercially exploited, and characterized as polymer. Various physicochemical methods like particle size analysis, scanning electron microscopy, thermal analysis, gel permeation chromatography, X-ray diffraction spectrometry, zeta potential, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy have been employed to characterize this gum in the present study. Particle size analyses suggest that mucilage has particle size in nanometer. Scanning electron microscopy analysis suggests that the mucilage has irregular particle size. The glass transition temperature of the gum was observed to be 138°C and 136°C by differential scanning calorimetry and differential thermal analysis, respectively. The thermogravimetric analysis suggested that mucilage had good thermal stability. The average molecular weight of mucilage was determined to be 379180, by gel permeation chromatography, while the viscosity of mucilage was observed to be 219.1 cP. The X-ray diffraction spectrometry pattern of the mucilage indicates a completely amorphous structure. Elemental analysis of the gum revealed the contents of carbon, hydrogen, nitrogen, and sulfur to be 80.9 (%), 10.1 (%), 1.58 (%), and 512 (mg/kg), respectively. Mucilage had specific content of calcium, magnesium, potassium, lower concentrations of aluminum, cadmium, cobalt, lead, and nickel. The major functional groups identified from FT-IR spectrum include 3441 cm(-1) (-OH), 1660 cm(-1) (Alkenyl C-H & C=C Stretch), 1632 cm(-1) (-COO-), 1414 cm(-1) (-COO-), and 1219 cm(-1) (-CH3CO). Analysis of mucilage by paper chromatography and 1D NMR, indicated the presence of rhamnose, xylose, arabinose, mannose, and fructose. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2014 ","pages":"647174"},"PeriodicalIF":0.0,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/647174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32259334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-06eCollection Date: 2014-01-01DOI: 10.1155/2014/493245
Houman Savoji, Amir Mehdizadeh, Ahmad Ramazani Saadat Abadi
Nitroglycerin (TNG) transdermal drug delivery systems (TDDSs) with different acrylic pressure-sensitive adhesives (PSAs) and chemical permeation enhancers (CPEs) were prepared. The effects of PSAs and CPEs types and concentrations on skin permeation and in vitro drug release from devices were evaluated using the dissolution method as well as the modified-jacketed Franz diffusion cells fitted with excised rat abdominal skin. It was demonstrated that the permeation rate or steady state flux (J ss) of the drug through the excised rat skin was dependent on the viscosity and type of acrylic PSA as well as the type of CPE. Among different acrylic PSAs, Duro-Tak 2516 and Duro-Tak 2054 showed the highest and Duro-Tak 2051 showed the lowest J ss. Among the various CPEs, propylene glycol and cetyl alcohol showed the highest and the lowest enhancement of the skin permeation of TNG, respectively. The adhesion properties of devices such as 180° peel strength and probe tack values were obtained. It was shown that increasing the concentration of CPE led to reduction in the adhesion property of PSA. Moreover, after optimization of the formulation, it was found that the use of 10% PG as a CPE and 25% nitroglycerin loading in Duro-Tak 2054 is an effective monolithic DIAP for the development of a transdermal therapeutic system for nitroglycerin.
{"title":"Transdermal nitroglycerin delivery using acrylic matrices: design, formulation, and in vitro characterization.","authors":"Houman Savoji, Amir Mehdizadeh, Ahmad Ramazani Saadat Abadi","doi":"10.1155/2014/493245","DOIUrl":"https://doi.org/10.1155/2014/493245","url":null,"abstract":"<p><p>Nitroglycerin (TNG) transdermal drug delivery systems (TDDSs) with different acrylic pressure-sensitive adhesives (PSAs) and chemical permeation enhancers (CPEs) were prepared. The effects of PSAs and CPEs types and concentrations on skin permeation and in vitro drug release from devices were evaluated using the dissolution method as well as the modified-jacketed Franz diffusion cells fitted with excised rat abdominal skin. It was demonstrated that the permeation rate or steady state flux (J ss) of the drug through the excised rat skin was dependent on the viscosity and type of acrylic PSA as well as the type of CPE. Among different acrylic PSAs, Duro-Tak 2516 and Duro-Tak 2054 showed the highest and Duro-Tak 2051 showed the lowest J ss. Among the various CPEs, propylene glycol and cetyl alcohol showed the highest and the lowest enhancement of the skin permeation of TNG, respectively. The adhesion properties of devices such as 180° peel strength and probe tack values were obtained. It was shown that increasing the concentration of CPE led to reduction in the adhesion property of PSA. Moreover, after optimization of the formulation, it was found that the use of 10% PG as a CPE and 25% nitroglycerin loading in Duro-Tak 2054 is an effective monolithic DIAP for the development of a transdermal therapeutic system for nitroglycerin. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2014 ","pages":"493245"},"PeriodicalIF":0.0,"publicationDate":"2014-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/493245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32102346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60-70% of the drug molecules are insufficiently soluble in aqueous media and/or have very low permeability to allow for their adequate and reproducible absorption from the gastrointestinal tract (GIT) following oral administration. Formulation scientists have to adopt various strategies to enhance their absorption. Lipidic formulations are found to be a promising approach to combat the challenges. In this review article, potential advantages and drawbacks of various conventional techniques and the newer approaches specifically the self-emulsifying systems are discussed. Various components of the self-emulsifying systems and their selection criteria are critically reviewed. The attempts of various scientists to transform the liquid self-emulsifying drug delivery systems (SEDDS) to solid-SEDDS by adsorption, spray drying, lyophilization, melt granulation, extrusion, and so forth to formulate various dosage forms like self emulsifying capsules, tablets, controlled release pellets, beads, microspheres, nanoparticles, suppositories, implants, and so forth have also been included. Formulation of SEDDS is a potential strategy to deliver new drug molecules with enhanced bioavailability mostly exhibiting poor aqueous solubility. The self-emulsifying system offers various advantages over other drug delivery systems having potential to solve various problems associated with drugs of all the classes of biopharmaceutical classification system (BCS).
{"title":"Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems.","authors":"Shweta Gupta, Rajesh Kesarla, Abdelwahab Omri","doi":"10.1155/2013/848043","DOIUrl":"https://doi.org/10.1155/2013/848043","url":null,"abstract":"<p><p>Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60-70% of the drug molecules are insufficiently soluble in aqueous media and/or have very low permeability to allow for their adequate and reproducible absorption from the gastrointestinal tract (GIT) following oral administration. Formulation scientists have to adopt various strategies to enhance their absorption. Lipidic formulations are found to be a promising approach to combat the challenges. In this review article, potential advantages and drawbacks of various conventional techniques and the newer approaches specifically the self-emulsifying systems are discussed. Various components of the self-emulsifying systems and their selection criteria are critically reviewed. The attempts of various scientists to transform the liquid self-emulsifying drug delivery systems (SEDDS) to solid-SEDDS by adsorption, spray drying, lyophilization, melt granulation, extrusion, and so forth to formulate various dosage forms like self emulsifying capsules, tablets, controlled release pellets, beads, microspheres, nanoparticles, suppositories, implants, and so forth have also been included. Formulation of SEDDS is a potential strategy to deliver new drug molecules with enhanced bioavailability mostly exhibiting poor aqueous solubility. The self-emulsifying system offers various advantages over other drug delivery systems having potential to solve various problems associated with drugs of all the classes of biopharmaceutical classification system (BCS). </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2013 ","pages":"848043"},"PeriodicalIF":0.0,"publicationDate":"2013-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/848043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32058963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this study is to evaluate the effect of formulation variables on different evaluation properties such as cumulative percentage release and swelling index in development of two layered buccal mucoadhesive system consisting of a highly water soluble drug risedronate sodium. The mucoadhesive systems were developed with varied concentrations of the polymers (1-2%) using plasticizer/permeation enhancer (25-50% w/w of polymer). Two layered films comprised of risedronate sodium with chitosan (85% deacetylated) and hydroxypropylmethyl cellulose (HPMC 4KM) interpolymer complex of different ratios were prepared by solvent casting method. An impermeable backing membrane of ethyl cellulose was incorporated into the films. The study shows the effect of multipolymeric films on the release of a bisphosphonates derivative. The optimized formulations showed films with uniform drug content (90.91 ± 0.17-105.53% ± 2.15), thickness (0.22 ± 0.01 mm to 0.31 ± 0.06 mm), mucoadhesivity (26 ± 3.61-42.33 ± 2.82 g), and controlled drug release profile up to a period of 10 hours. The films were also studied for swelling index, moisture uptake, viscosity, folding endurance, water vapor transmission rate, and mucoadhesive time.
{"title":"Design and characterization of double layered mucoadhesive system containing bisphosphonate derivative.","authors":"Dhrubojyoti Mukherjee, Srinivasan Bharath","doi":"10.1155/2013/604690","DOIUrl":"https://doi.org/10.1155/2013/604690","url":null,"abstract":"<p><p>The objective of this study is to evaluate the effect of formulation variables on different evaluation properties such as cumulative percentage release and swelling index in development of two layered buccal mucoadhesive system consisting of a highly water soluble drug risedronate sodium. The mucoadhesive systems were developed with varied concentrations of the polymers (1-2%) using plasticizer/permeation enhancer (25-50% w/w of polymer). Two layered films comprised of risedronate sodium with chitosan (85% deacetylated) and hydroxypropylmethyl cellulose (HPMC 4KM) interpolymer complex of different ratios were prepared by solvent casting method. An impermeable backing membrane of ethyl cellulose was incorporated into the films. The study shows the effect of multipolymeric films on the release of a bisphosphonates derivative. The optimized formulations showed films with uniform drug content (90.91 ± 0.17-105.53% ± 2.15), thickness (0.22 ± 0.01 mm to 0.31 ± 0.06 mm), mucoadhesivity (26 ± 3.61-42.33 ± 2.82 g), and controlled drug release profile up to a period of 10 hours. The films were also studied for swelling index, moisture uptake, viscosity, folding endurance, water vapor transmission rate, and mucoadhesive time. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2013 ","pages":"604690"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/604690","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32055549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of the present work was to develop a gastroretentive floating tablet of Atenolol and investigate the effects of both hydrophilic and hydrophobic retardant on in vitro release. Atenolol is an antihypertensive drug with an oral bioavailability of only 50% because of its poor absorption from lower gastrointestinal tract. The floating tablets of Atenolol were prepared to increase the gastric retention, to extend the drug release, and to improve the bioavailability of the drug. The floating tablets were formulated using hydrophilic polymers as Hydroxy propyl methyl cellulose (HPMC K4M and HPMC K15M), hydrophobic retardant as a hydrogenated cottonseed oil (HCSO), and sodium bicarbonate as a gas generating agent to reduce floating lag time. The formulated tablets were evaluated for the quality control tests such as weight variation, hardness, friability, swelling index, floating lag time, and total floating time. The in vitro release study of the tablets was performed in 0.1 N HCl as a dissolution media. The results of the present study clearly indicates the promising potential of Atenolol floating system as an alternative to the conventional dosage and other sustained release formulations. The study also revealed the effectiveness of HCSO as retardant in combination with HPMC.
{"title":"Development and evaluation of gastroretentive floating tablets of an antihypertensive drug using hydrogenated cottonseed oil.","authors":"Harshal Ashok Pawar, Pooja Ramchandra Gharat, Rachana Vivek Dhavale, Pooja Rasiklal Joshi, Pushpita Pankajkumar Rakshit","doi":"10.1155/2013/137238","DOIUrl":"https://doi.org/10.1155/2013/137238","url":null,"abstract":"<p><p>The aim of the present work was to develop a gastroretentive floating tablet of Atenolol and investigate the effects of both hydrophilic and hydrophobic retardant on in vitro release. Atenolol is an antihypertensive drug with an oral bioavailability of only 50% because of its poor absorption from lower gastrointestinal tract. The floating tablets of Atenolol were prepared to increase the gastric retention, to extend the drug release, and to improve the bioavailability of the drug. The floating tablets were formulated using hydrophilic polymers as Hydroxy propyl methyl cellulose (HPMC K4M and HPMC K15M), hydrophobic retardant as a hydrogenated cottonseed oil (HCSO), and sodium bicarbonate as a gas generating agent to reduce floating lag time. The formulated tablets were evaluated for the quality control tests such as weight variation, hardness, friability, swelling index, floating lag time, and total floating time. The in vitro release study of the tablets was performed in 0.1 N HCl as a dissolution media. The results of the present study clearly indicates the promising potential of Atenolol floating system as an alternative to the conventional dosage and other sustained release formulations. The study also revealed the effectiveness of HCSO as retardant in combination with HPMC. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2013 ","pages":"137238"},"PeriodicalIF":0.0,"publicationDate":"2013-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/137238","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32055547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asymmetric membrane capsules (AMCs) are one of the novel osmotic delivery devices which deliver a wide range of drugs in controlled manner. In the present work, we developed and validated a semiautomatic process by fabricating a hydraulic assisted bench top model for manufacturing AMCs. The capsule walls of AMCs were prepared by dip coating phase inversion process using cellulose acetate butyrate (CAB) as coating polymer and propylene glycol (PG) as plasticizer and pore former. The comparative examination of physical parameters confirmed the consistency, efficiency, and reproducibility of the semiautomatic process over the manual procedure. The SEM studies revealed a thin dense region supported on a thicker porous membrane of the capsule shells. Formulations of AMCs were prepared based on a 2(3) full factorial design using metformin hydrochloride as the model drug. The effect of formulation variables such as concentration of PG and levels of fructose and potassium chloride were studied on the in vitro drug release using Design-Expert 8.0.2 (USA) software. From the in vitro release studies, it was observed that the concentration of pore former and level of osmogents had a direct effect on the drug release. From the validation studies of the optimized formulation (OPT) with the predicted response, it was observed that the drug release was independent of pH and agitation intensity but dependent on osmotic pressure of the dissolution medium. The OPT followed controlled zero-order release kinetics over a period of 13 h.
{"title":"Statistical optimization and in vitro evaluation of metformin hydrochloride asymmetric membrane capsules prepared by a novel semiautomatic manufacturing approach.","authors":"Venkatesh Teja Banala, Bharath Srinivasan, Deveswaran Rajamanickam, Basavaraj Basappa Veerbadraiah, Madhavan Varadarajan","doi":"10.1155/2013/719196","DOIUrl":"https://doi.org/10.1155/2013/719196","url":null,"abstract":"<p><p>Asymmetric membrane capsules (AMCs) are one of the novel osmotic delivery devices which deliver a wide range of drugs in controlled manner. In the present work, we developed and validated a semiautomatic process by fabricating a hydraulic assisted bench top model for manufacturing AMCs. The capsule walls of AMCs were prepared by dip coating phase inversion process using cellulose acetate butyrate (CAB) as coating polymer and propylene glycol (PG) as plasticizer and pore former. The comparative examination of physical parameters confirmed the consistency, efficiency, and reproducibility of the semiautomatic process over the manual procedure. The SEM studies revealed a thin dense region supported on a thicker porous membrane of the capsule shells. Formulations of AMCs were prepared based on a 2(3) full factorial design using metformin hydrochloride as the model drug. The effect of formulation variables such as concentration of PG and levels of fructose and potassium chloride were studied on the in vitro drug release using Design-Expert 8.0.2 (USA) software. From the in vitro release studies, it was observed that the concentration of pore former and level of osmogents had a direct effect on the drug release. From the validation studies of the optimized formulation (OPT) with the predicted response, it was observed that the drug release was independent of pH and agitation intensity but dependent on osmotic pressure of the dissolution medium. The OPT followed controlled zero-order release kinetics over a period of 13 h. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2013 ","pages":"719196"},"PeriodicalIF":0.0,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/719196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31994228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5 min. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration.
{"title":"Preparation of a sustained release drug delivery system for dexamethasone by a thermosensitive, in situ forming hydrogel for use in differentiation of dental pulp.","authors":"Elham Khodaverdi, Fatemeh Kheirandish, Farnaz Sadat Mirzazadeh Tekie, Bibi Zahra Khashyarmanesh, Farzin Hadizadeh, Hamideh Moallemzadeh Haghighi","doi":"10.1155/2013/983053","DOIUrl":"https://doi.org/10.1155/2013/983053","url":null,"abstract":"<p><p>In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5 min. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration. </p>","PeriodicalId":14802,"journal":{"name":"ISRN Pharmaceutics","volume":"2013 ","pages":"983053"},"PeriodicalIF":0.0,"publicationDate":"2013-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/983053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31981388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}