{"title":"补充烟酸会降低运动能力。","authors":"Greggory R Davis, Arnold G Nelson","doi":"10.1024/0300-9831/a000736","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> Several pre-workout supplements contain niacin, although the exercise performance effects of niacin are poorly understood. The purpose of the present study was to examine the performance effects of niacin versus caffeine as a pre-workout supplement. Twenty-five untrained males were recruited to complete three identical ramped aerobic cycling exercise trials. Participants were administered caffeine (CA) at 5 mg/kg body weight, 1000 mg niacin (NI), or a methylcelluloce placebo (PL) supplement prior to each trial. NI treatment induced significantly higher respiratory exchange ratio (RER) during exercise compared to the CA treatment, but not the PL treatment (PL=0.87±0.08, NI=0.91±0.08, CA=0.87±0.08; p=0.02). Similarly, exercise time to exhaustion (in minutes) was significantly different between the NI treatment and the CA treatment, but not the PL treatment (PL=27.45±4.47, NI=26.30±4.91, CA=28.76±4.86; p<0.01). Habitual caffeine use (p=0.16), habitual aerobic exercise (p=0.60), and habitual resistance exercise (p=0.10) did not significantly affect RER. Similarly, habitual caffeine use (p=0.72), habitual aerobic exercise (p=0.08), and habitual resistance exercise (p=0.39) did not significantly affect total work performed. The elevated RER and decreased time to exhaustion in the NI treatment suggests limited lipid availability during exercise and impaired exercise performance.</p>","PeriodicalId":13884,"journal":{"name":"International Journal for Vitamin and Nutrition Research","volume":" ","pages":"385-391"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Niacin supplementation impairs exercise performance.\",\"authors\":\"Greggory R Davis, Arnold G Nelson\",\"doi\":\"10.1024/0300-9831/a000736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b></b> Several pre-workout supplements contain niacin, although the exercise performance effects of niacin are poorly understood. The purpose of the present study was to examine the performance effects of niacin versus caffeine as a pre-workout supplement. Twenty-five untrained males were recruited to complete three identical ramped aerobic cycling exercise trials. Participants were administered caffeine (CA) at 5 mg/kg body weight, 1000 mg niacin (NI), or a methylcelluloce placebo (PL) supplement prior to each trial. NI treatment induced significantly higher respiratory exchange ratio (RER) during exercise compared to the CA treatment, but not the PL treatment (PL=0.87±0.08, NI=0.91±0.08, CA=0.87±0.08; p=0.02). Similarly, exercise time to exhaustion (in minutes) was significantly different between the NI treatment and the CA treatment, but not the PL treatment (PL=27.45±4.47, NI=26.30±4.91, CA=28.76±4.86; p<0.01). Habitual caffeine use (p=0.16), habitual aerobic exercise (p=0.60), and habitual resistance exercise (p=0.10) did not significantly affect RER. Similarly, habitual caffeine use (p=0.72), habitual aerobic exercise (p=0.08), and habitual resistance exercise (p=0.39) did not significantly affect total work performed. The elevated RER and decreased time to exhaustion in the NI treatment suggests limited lipid availability during exercise and impaired exercise performance.</p>\",\"PeriodicalId\":13884,\"journal\":{\"name\":\"International Journal for Vitamin and Nutrition Research\",\"volume\":\" \",\"pages\":\"385-391\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Vitamin and Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1024/0300-9831/a000736\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Vitamin and Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1024/0300-9831/a000736","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Several pre-workout supplements contain niacin, although the exercise performance effects of niacin are poorly understood. The purpose of the present study was to examine the performance effects of niacin versus caffeine as a pre-workout supplement. Twenty-five untrained males were recruited to complete three identical ramped aerobic cycling exercise trials. Participants were administered caffeine (CA) at 5 mg/kg body weight, 1000 mg niacin (NI), or a methylcelluloce placebo (PL) supplement prior to each trial. NI treatment induced significantly higher respiratory exchange ratio (RER) during exercise compared to the CA treatment, but not the PL treatment (PL=0.87±0.08, NI=0.91±0.08, CA=0.87±0.08; p=0.02). Similarly, exercise time to exhaustion (in minutes) was significantly different between the NI treatment and the CA treatment, but not the PL treatment (PL=27.45±4.47, NI=26.30±4.91, CA=28.76±4.86; p<0.01). Habitual caffeine use (p=0.16), habitual aerobic exercise (p=0.60), and habitual resistance exercise (p=0.10) did not significantly affect RER. Similarly, habitual caffeine use (p=0.72), habitual aerobic exercise (p=0.08), and habitual resistance exercise (p=0.39) did not significantly affect total work performed. The elevated RER and decreased time to exhaustion in the NI treatment suggests limited lipid availability during exercise and impaired exercise performance.
期刊介绍:
Since 1930 this journal has provided an important international forum for scientific advances in the study of nutrition and vitamins. Widely read by academicians as well as scientists working in major governmental and corporate laboratories throughout the world, this publication presents work dealing with basic as well as applied topics in the field of micronutrients, macronutrients, and non-nutrients such as secondary plant compounds.
The editorial and advisory boards include many of the leading persons currently working in this area.
The journal is of particular interest to:
- Nutritionists
- Vitaminologists
- Biochemists
- Physicians
- Engineers of human and animal nutrition
- Food scientists