Jae Geun Song, Kshitis Chandra Baral, Gyu-Lin Kim, Ji-Won Park, Soo-Hwa Seo, Da-Hyun Kim, Dong Hoon Jung, Nonye Linda Ifekpolugo, Hyo-Kyung Han
{"title":"生物体液中治疗性蛋白的定量分析:分析技术的最新进展。","authors":"Jae Geun Song, Kshitis Chandra Baral, Gyu-Lin Kim, Ji-Won Park, Soo-Hwa Seo, Da-Hyun Kim, Dong Hoon Jung, Nonye Linda Ifekpolugo, Hyo-Kyung Han","doi":"10.1080/10717544.2023.2183816","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"30 1","pages":"2183816"},"PeriodicalIF":6.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques.\",\"authors\":\"Jae Geun Song, Kshitis Chandra Baral, Gyu-Lin Kim, Ji-Won Park, Soo-Hwa Seo, Da-Hyun Kim, Dong Hoon Jung, Nonye Linda Ifekpolugo, Hyo-Kyung Han\",\"doi\":\"10.1080/10717544.2023.2183816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"30 1\",\"pages\":\"2183816\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2023.2183816\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2023.2183816","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques.
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.