内源性雌激素对女性脑完整性网络模型的影响

IF 1.7 Q3 CLINICAL NEUROLOGY Aging brain Pub Date : 2022-01-01 DOI:10.1016/j.nbas.2022.100053
Janelle T. Foret , Marie Caillaud , Drew D. Gourley , Maria Dekhtyar , Hirofumi Tanaka , Andreana P. Haley
{"title":"内源性雌激素对女性脑完整性网络模型的影响","authors":"Janelle T. Foret ,&nbsp;Marie Caillaud ,&nbsp;Drew D. Gourley ,&nbsp;Maria Dekhtyar ,&nbsp;Hirofumi Tanaka ,&nbsp;Andreana P. Haley","doi":"10.1016/j.nbas.2022.100053","DOIUrl":null,"url":null,"abstract":"<div><p>Recent reports document sex differences in midlife brain integrity and metabolic health, such that more relationships are detectable between metabolic syndrome (MetS) components and markers of brain health in females than in males. Midlife is characterized by a rapid decrease in endogenous estrogen levels for women which is thought to increase risk for cardiometabolic disease and neurocognitive decline. Our study used network models, designed to explore the interconnectedness and organization of relationships among many variables at once, to compare the influence of endogenous estrogen and chronological age on a network of brain and metabolic health in order to investigate the utility of estrogen as a biomarker for brain vulnerability. Data were analyzed from 82 females (ages 40–62). Networks consisted of known biomarkers of risk for late-life cognitive decline: the five components of MetS; Brain-predicted age difference calculated on gray and white matter volume; white matter hyperintensities; Default Mode Network functional connectivity; cerebral concentrations of <em>N</em>-acetyl aspartate, glutamate and myo-inositol; and serum concentrations of estradiol. A second network replaced estradiol with chronological age. Expected influence (EI) of estradiol on the network was −1.190, relative to chronological age at −0.524, indicating that estradiol had a stronger expected influence over the network than age. A negative expected influence indicates that higher levels of estradiol would be expected to decrease the number of relationships in the model, which is thought to indicate lower risk. Overall, levels of estradiol appear more influential than chronological age at midlife for relationships between brain integrity and metabolic health.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2d/00/main.PMC9997143.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of endogenous estrogen on a network model of female brain integrity\",\"authors\":\"Janelle T. Foret ,&nbsp;Marie Caillaud ,&nbsp;Drew D. Gourley ,&nbsp;Maria Dekhtyar ,&nbsp;Hirofumi Tanaka ,&nbsp;Andreana P. Haley\",\"doi\":\"10.1016/j.nbas.2022.100053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent reports document sex differences in midlife brain integrity and metabolic health, such that more relationships are detectable between metabolic syndrome (MetS) components and markers of brain health in females than in males. Midlife is characterized by a rapid decrease in endogenous estrogen levels for women which is thought to increase risk for cardiometabolic disease and neurocognitive decline. Our study used network models, designed to explore the interconnectedness and organization of relationships among many variables at once, to compare the influence of endogenous estrogen and chronological age on a network of brain and metabolic health in order to investigate the utility of estrogen as a biomarker for brain vulnerability. Data were analyzed from 82 females (ages 40–62). Networks consisted of known biomarkers of risk for late-life cognitive decline: the five components of MetS; Brain-predicted age difference calculated on gray and white matter volume; white matter hyperintensities; Default Mode Network functional connectivity; cerebral concentrations of <em>N</em>-acetyl aspartate, glutamate and myo-inositol; and serum concentrations of estradiol. A second network replaced estradiol with chronological age. Expected influence (EI) of estradiol on the network was −1.190, relative to chronological age at −0.524, indicating that estradiol had a stronger expected influence over the network than age. A negative expected influence indicates that higher levels of estradiol would be expected to decrease the number of relationships in the model, which is thought to indicate lower risk. Overall, levels of estradiol appear more influential than chronological age at midlife for relationships between brain integrity and metabolic health.</p></div>\",\"PeriodicalId\":72131,\"journal\":{\"name\":\"Aging brain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2d/00/main.PMC9997143.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589958922000251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958922000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近的报告记录了中年大脑完整性和代谢健康的性别差异,因此代谢综合征(MetS)成分与大脑健康标志物之间的关系在女性中比在男性中更容易检测到。中年妇女的特点是内源性雌激素水平迅速下降,这被认为会增加患心脏代谢疾病和神经认知能力下降的风险。我们的研究使用网络模型,旨在同时探索许多变量之间的相互联系和组织关系,比较内源性雌激素和实足年龄对大脑和代谢健康网络的影响,以研究雌激素作为大脑脆弱性生物标志物的效用。数据分析来自82名女性(40-62岁)。网络由已知的晚年认知能力下降风险的生物标志物组成:MetS的五个组成部分;根据灰质和白质体积计算的脑预测年龄差异;白质高信号;默认模式网络功能连接;脑内n -乙酰天冬氨酸、谷氨酸和肌醇浓度;和血清雌二醇浓度。第二个网络用实际年龄代替雌二醇。雌二醇对网络的预期影响(EI)为- 1.190,相对于实足年龄为- 0.524,表明雌二醇对网络的预期影响强于年龄。负面的预期影响表明,较高的雌二醇水平预计会减少模型中关系的数量,这被认为表明风险较低。总的来说,雌二醇水平对中年大脑完整性和代谢健康之间关系的影响似乎比实足年龄更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of endogenous estrogen on a network model of female brain integrity

Recent reports document sex differences in midlife brain integrity and metabolic health, such that more relationships are detectable between metabolic syndrome (MetS) components and markers of brain health in females than in males. Midlife is characterized by a rapid decrease in endogenous estrogen levels for women which is thought to increase risk for cardiometabolic disease and neurocognitive decline. Our study used network models, designed to explore the interconnectedness and organization of relationships among many variables at once, to compare the influence of endogenous estrogen and chronological age on a network of brain and metabolic health in order to investigate the utility of estrogen as a biomarker for brain vulnerability. Data were analyzed from 82 females (ages 40–62). Networks consisted of known biomarkers of risk for late-life cognitive decline: the five components of MetS; Brain-predicted age difference calculated on gray and white matter volume; white matter hyperintensities; Default Mode Network functional connectivity; cerebral concentrations of N-acetyl aspartate, glutamate and myo-inositol; and serum concentrations of estradiol. A second network replaced estradiol with chronological age. Expected influence (EI) of estradiol on the network was −1.190, relative to chronological age at −0.524, indicating that estradiol had a stronger expected influence over the network than age. A negative expected influence indicates that higher levels of estradiol would be expected to decrease the number of relationships in the model, which is thought to indicate lower risk. Overall, levels of estradiol appear more influential than chronological age at midlife for relationships between brain integrity and metabolic health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging brain
Aging brain Neuroscience (General), Geriatrics and Gerontology
自引率
0.00%
发文量
0
期刊最新文献
Age-related differences in structural and resting-state functional brain network organization across the adult lifespan: A cross-sectional study Age-related fornix decline predicts conservative response strategy-based slowing in perceptual decision-making Age-related decline in social interaction is associated with decreased c-Fos induction in select brain regions independent of oxytocin receptor expression profiles Innate immunity in brain aging and neurodegeneration Neural correlates of home-based intervention effects on value-based sequential decision-making in healthy older adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1