连接罕见和常见的疾病词汇之间的映射人类表型本体和密码。

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2023-04-01 DOI:10.1093/jamiaopen/ooad007
Evonne McArthur, Lisa Bastarache, John A Capra
{"title":"连接罕见和常见的疾病词汇之间的映射人类表型本体和密码。","authors":"Evonne McArthur,&nbsp;Lisa Bastarache,&nbsp;John A Capra","doi":"10.1093/jamiaopen/ooad007","DOIUrl":null,"url":null,"abstract":"<p><p>Enabling discovery across the spectrum of rare and common diseases requires the integration of biological knowledge with clinical data; however, differences in terminologies present a major barrier. For example, the Human Phenotype Ontology (HPO) is the primary vocabulary for describing features of rare diseases, while most clinical encounters use International Classification of Diseases (ICD) billing codes. ICD codes are further organized into clinically meaningful phenotypes via phecodes. Despite their prevalence, no robust phenome-wide disease mapping between HPO and phecodes/ICD exists. Here, we synthesize evidence using diverse sources and methods-including text matching, the National Library of Medicine's Unified Medical Language System (UMLS), Wikipedia, SORTA, and PheMap-to define a mapping between phecodes and HPO terms via 38 950 links. We evaluate the precision and recall for each domain of evidence, both individually and jointly. This flexibility permits users to tailor the HPO-phecode links for diverse applications along the spectrum of monogenic to polygenic diseases.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 1","pages":"ooad007"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/85/ooad007.PMC9976874.pdf","citationCount":"2","resultStr":"{\"title\":\"Linking rare and common disease vocabularies by mapping between the human phenotype ontology and phecodes.\",\"authors\":\"Evonne McArthur,&nbsp;Lisa Bastarache,&nbsp;John A Capra\",\"doi\":\"10.1093/jamiaopen/ooad007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enabling discovery across the spectrum of rare and common diseases requires the integration of biological knowledge with clinical data; however, differences in terminologies present a major barrier. For example, the Human Phenotype Ontology (HPO) is the primary vocabulary for describing features of rare diseases, while most clinical encounters use International Classification of Diseases (ICD) billing codes. ICD codes are further organized into clinically meaningful phenotypes via phecodes. Despite their prevalence, no robust phenome-wide disease mapping between HPO and phecodes/ICD exists. Here, we synthesize evidence using diverse sources and methods-including text matching, the National Library of Medicine's Unified Medical Language System (UMLS), Wikipedia, SORTA, and PheMap-to define a mapping between phecodes and HPO terms via 38 950 links. We evaluate the precision and recall for each domain of evidence, both individually and jointly. This flexibility permits users to tailor the HPO-phecode links for diverse applications along the spectrum of monogenic to polygenic diseases.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":\"6 1\",\"pages\":\"ooad007\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/85/ooad007.PMC9976874.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooad007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 2

摘要

要想发现罕见病和常见病,就需要将生物学知识与临床数据相结合;然而,术语上的差异是一个主要障碍。例如,人类表型本体(HPO)是描述罕见疾病特征的主要词汇,而大多数临床遇到使用国际疾病分类(ICD)计费代码。ICD代码通过显码进一步组织成临床有意义的表型。尽管HPO和phecodes/ICD普遍存在,但在HPO和phecodes/ICD之间没有强有力的全现象疾病图谱。在这里,我们使用不同的来源和方法(包括文本匹配、国家医学图书馆的统一医学语言系统(UMLS)、Wikipedia、SORTA和phemap)综合证据,通过38950个链接定义代码和HPO术语之间的映射。我们评估了每个证据领域的精确度和召回率,无论是单独的还是联合的。这种灵活性允许用户为单基因到多基因疾病的各种应用量身定制HPO-phecode链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linking rare and common disease vocabularies by mapping between the human phenotype ontology and phecodes.

Enabling discovery across the spectrum of rare and common diseases requires the integration of biological knowledge with clinical data; however, differences in terminologies present a major barrier. For example, the Human Phenotype Ontology (HPO) is the primary vocabulary for describing features of rare diseases, while most clinical encounters use International Classification of Diseases (ICD) billing codes. ICD codes are further organized into clinically meaningful phenotypes via phecodes. Despite their prevalence, no robust phenome-wide disease mapping between HPO and phecodes/ICD exists. Here, we synthesize evidence using diverse sources and methods-including text matching, the National Library of Medicine's Unified Medical Language System (UMLS), Wikipedia, SORTA, and PheMap-to define a mapping between phecodes and HPO terms via 38 950 links. We evaluate the precision and recall for each domain of evidence, both individually and jointly. This flexibility permits users to tailor the HPO-phecode links for diverse applications along the spectrum of monogenic to polygenic diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Implementation of a rule-based algorithm to find patients eligible for cancer clinical trials. Implications of mappings between International Classification of Diseases clinical diagnosis codes and Human Phenotype Ontology terms. MMFP-Tableau: enabling precision mitochondrial medicine through integration, visualization, and analytics of clinical and research health system electronic data. Addressing ethical issues in healthcare artificial intelligence using a lifecycle-informed process. Development of an evidence- and consensus-based Digital Healthcare Equity Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1