利用数值模型输出对野地火灾造成的 pm2.5 进行空间因果分析。

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2022-12-01 Epub Date: 2022-09-26 DOI:10.1214/22-aoas1610
Alexandra Larsen, Shu Yang, Brian J Reich, Ana G Rappold
{"title":"利用数值模型输出对野地火灾造成的 pm2.5 进行空间因果分析。","authors":"Alexandra Larsen, Shu Yang, Brian J Reich, Ana G Rappold","doi":"10.1214/22-aoas1610","DOIUrl":null,"url":null,"abstract":"<p><p>Wildland fire smoke contains hazardous levels of fine particulate matter (PM<sub>2.5</sub>), a pollutant shown to adversely effect health. Estimating fire attributable PM<sub>2.5</sub> concentrations is key to quantifying the impact on air quality and subsequent health burden. This is a challenging problem since only total PM<sub>2.5</sub> is measured at monitoring stations and both fire-attributable PM<sub>2.5</sub> and PM<sub>2.5</sub> from all other sources are correlated in space and time. We propose a framework for estimating fire-contributed PM<sub>2.5</sub> and PM<sub>2.5</sub> from all other sources using a novel causal inference framework and bias-adjusted chemical model representations of PM<sub>2.5</sub> under counterfactual scenarios. The chemical model representation of PM<sub>2.5</sub> for this analysis is simulated using Community Multiscale Air Quality Modeling System (CMAQ), run with and without fire emissions across the contiguous U.S. for the 2008-2012 wildfire seasons. The CMAQ output is calibrated with observations from monitoring sites for the same spatial domain and time period. We use a Bayesian model that accounts for spatial variation to estimate the effect of wildland fires on PM<sub>2.5</sub> and state assumptions under which the estimate has a valid causal interpretation. Our results include estimates of the contributions of wildfire smoke to PM<sub>2.5</sub> for the contiguous U.S. Additionally, we compute the health burden associated with the PM<sub>2.5</sub> attributable to wildfire smoke.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181852/pdf/nihms-1846188.pdf","citationCount":"0","resultStr":"{\"title\":\"A SPATIAL CAUSAL ANALYSIS OF WILDLAND FIRE-CONTRIBUTED PM<sub>2.5</sub> USING NUMERICAL MODEL OUTPUT.\",\"authors\":\"Alexandra Larsen, Shu Yang, Brian J Reich, Ana G Rappold\",\"doi\":\"10.1214/22-aoas1610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wildland fire smoke contains hazardous levels of fine particulate matter (PM<sub>2.5</sub>), a pollutant shown to adversely effect health. Estimating fire attributable PM<sub>2.5</sub> concentrations is key to quantifying the impact on air quality and subsequent health burden. This is a challenging problem since only total PM<sub>2.5</sub> is measured at monitoring stations and both fire-attributable PM<sub>2.5</sub> and PM<sub>2.5</sub> from all other sources are correlated in space and time. We propose a framework for estimating fire-contributed PM<sub>2.5</sub> and PM<sub>2.5</sub> from all other sources using a novel causal inference framework and bias-adjusted chemical model representations of PM<sub>2.5</sub> under counterfactual scenarios. The chemical model representation of PM<sub>2.5</sub> for this analysis is simulated using Community Multiscale Air Quality Modeling System (CMAQ), run with and without fire emissions across the contiguous U.S. for the 2008-2012 wildfire seasons. The CMAQ output is calibrated with observations from monitoring sites for the same spatial domain and time period. We use a Bayesian model that accounts for spatial variation to estimate the effect of wildland fires on PM<sub>2.5</sub> and state assumptions under which the estimate has a valid causal interpretation. Our results include estimates of the contributions of wildfire smoke to PM<sub>2.5</sub> for the contiguous U.S. Additionally, we compute the health burden associated with the PM<sub>2.5</sub> attributable to wildfire smoke.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181852/pdf/nihms-1846188.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aoas1610\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aoas1610","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

野外火灾烟雾中含有有害水平的细颗粒物 (PM2.5),这种污染物已被证明会对健康产生不利影响。估算可归因于火灾的 PM2.5 浓度是量化对空气质量的影响和后续健康负担的关键。这是一个具有挑战性的问题,因为监测站只能测量 PM2.5 总量,而火灾引起的 PM2.5 和所有其他来源的 PM2.5 在空间和时间上都是相关的。我们提出了一个框架,利用新颖的因果推理框架和反事实情景下经过偏差调整的 PM2.5 化学模型表征,估算火灾贡献的 PM2.5 和所有其他来源的 PM2.5。用于本分析的 PM2.5 化学模型表示是使用社区多尺度空气质量建模系统(CMAQ)模拟的,在 2008-2012 年野火季节,在有和没有火灾排放的情况下在美国毗连地区运行。CMAQ 的输出结果与同一空间域和时间段内监测点的观测结果进行了校准。我们使用贝叶斯模型来估算野火对 PM2.5 的影响,并说明在哪些假设条件下估算结果具有有效的因果解释。我们的结果包括野火烟雾对美国毗连地区 PM2.5 贡献的估计值。此外,我们还计算了与野火烟雾造成的 PM2.5 相关的健康负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A SPATIAL CAUSAL ANALYSIS OF WILDLAND FIRE-CONTRIBUTED PM2.5 USING NUMERICAL MODEL OUTPUT.

Wildland fire smoke contains hazardous levels of fine particulate matter (PM2.5), a pollutant shown to adversely effect health. Estimating fire attributable PM2.5 concentrations is key to quantifying the impact on air quality and subsequent health burden. This is a challenging problem since only total PM2.5 is measured at monitoring stations and both fire-attributable PM2.5 and PM2.5 from all other sources are correlated in space and time. We propose a framework for estimating fire-contributed PM2.5 and PM2.5 from all other sources using a novel causal inference framework and bias-adjusted chemical model representations of PM2.5 under counterfactual scenarios. The chemical model representation of PM2.5 for this analysis is simulated using Community Multiscale Air Quality Modeling System (CMAQ), run with and without fire emissions across the contiguous U.S. for the 2008-2012 wildfire seasons. The CMAQ output is calibrated with observations from monitoring sites for the same spatial domain and time period. We use a Bayesian model that accounts for spatial variation to estimate the effect of wildland fires on PM2.5 and state assumptions under which the estimate has a valid causal interpretation. Our results include estimates of the contributions of wildfire smoke to PM2.5 for the contiguous U.S. Additionally, we compute the health burden associated with the PM2.5 attributable to wildfire smoke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1