Anahita Marhounian Nezhad, Omid Farshad, Mohammad Hossein Morowvat
{"title":"评价单层和多层碳纳米管对三种不同人类细胞系的细胞毒性。","authors":"Anahita Marhounian Nezhad, Omid Farshad, Mohammad Hossein Morowvat","doi":"10.2174/1872208316666220820121657","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nanotechnology and nanobiotechnology have emerged as novel technologies for the production and application of nanoscale materials in different pharmaceutical, medical, and biological fields. Besides, there are a bunch of recently published patents in this field. Although Carbon Nanotubes (CNTs) have various advantages and can be applied for a wide variety of purposes, their toxicity on humans is a matter of concern.</p><p><strong>Objective: </strong>This study aimed to evaluate six different types of CNTs, including pristine, carboxylated, and hydroxylated single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) on three human cell lines.</p><p><strong>Methods: </strong>MTT assay was employed to assess the cytotoxicity of six types of CNTs, including pristine, carboxylated, and hydroxylated forms of SWCNTs and MWCNTs on three different human cell lines.</p><p><strong>Results: </strong>The findings of the MTT assay showed that the six different types of CNTs (100- 600 μg/mL) exhibited different levels of cytotoxicity on the three human cell lines. The observed trend presented dose-dependent cytotoxicity on the three studied cell lines, including pulmonary, skin, and gastrointestinal cell lines. SWCNT-COOH and MWCNTs accounted for the lowest cell viability in the three human cell lines.</p><p><strong>Conclusion: </strong>In conclusion, researchers and industrial workers are recommended to be cautious while working with different types of CNT because all their toxicity dimensions have not been determined yet.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":"17 2","pages":"186-195"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Cytotoxicity of Monolayered and Multilayered Carbon Nanotubes on Three Different Human Cell Lines.\",\"authors\":\"Anahita Marhounian Nezhad, Omid Farshad, Mohammad Hossein Morowvat\",\"doi\":\"10.2174/1872208316666220820121657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nanotechnology and nanobiotechnology have emerged as novel technologies for the production and application of nanoscale materials in different pharmaceutical, medical, and biological fields. Besides, there are a bunch of recently published patents in this field. Although Carbon Nanotubes (CNTs) have various advantages and can be applied for a wide variety of purposes, their toxicity on humans is a matter of concern.</p><p><strong>Objective: </strong>This study aimed to evaluate six different types of CNTs, including pristine, carboxylated, and hydroxylated single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) on three human cell lines.</p><p><strong>Methods: </strong>MTT assay was employed to assess the cytotoxicity of six types of CNTs, including pristine, carboxylated, and hydroxylated forms of SWCNTs and MWCNTs on three different human cell lines.</p><p><strong>Results: </strong>The findings of the MTT assay showed that the six different types of CNTs (100- 600 μg/mL) exhibited different levels of cytotoxicity on the three human cell lines. The observed trend presented dose-dependent cytotoxicity on the three studied cell lines, including pulmonary, skin, and gastrointestinal cell lines. SWCNT-COOH and MWCNTs accounted for the lowest cell viability in the three human cell lines.</p><p><strong>Conclusion: </strong>In conclusion, researchers and industrial workers are recommended to be cautious while working with different types of CNT because all their toxicity dimensions have not been determined yet.</p>\",\"PeriodicalId\":21064,\"journal\":{\"name\":\"Recent patents on biotechnology\",\"volume\":\"17 2\",\"pages\":\"186-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1872208316666220820121657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872208316666220820121657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Evaluating the Cytotoxicity of Monolayered and Multilayered Carbon Nanotubes on Three Different Human Cell Lines.
Background: Nanotechnology and nanobiotechnology have emerged as novel technologies for the production and application of nanoscale materials in different pharmaceutical, medical, and biological fields. Besides, there are a bunch of recently published patents in this field. Although Carbon Nanotubes (CNTs) have various advantages and can be applied for a wide variety of purposes, their toxicity on humans is a matter of concern.
Objective: This study aimed to evaluate six different types of CNTs, including pristine, carboxylated, and hydroxylated single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) on three human cell lines.
Methods: MTT assay was employed to assess the cytotoxicity of six types of CNTs, including pristine, carboxylated, and hydroxylated forms of SWCNTs and MWCNTs on three different human cell lines.
Results: The findings of the MTT assay showed that the six different types of CNTs (100- 600 μg/mL) exhibited different levels of cytotoxicity on the three human cell lines. The observed trend presented dose-dependent cytotoxicity on the three studied cell lines, including pulmonary, skin, and gastrointestinal cell lines. SWCNT-COOH and MWCNTs accounted for the lowest cell viability in the three human cell lines.
Conclusion: In conclusion, researchers and industrial workers are recommended to be cautious while working with different types of CNT because all their toxicity dimensions have not been determined yet.
期刊介绍:
Recent Patents on Biotechnology publishes review articles by experts on recent patents on biotechnology. A selection of important and recent patents on biotechnology is also included in the journal. The journal is essential reading for all researchers involved in all fields of biotechnology.