{"title":"膀胱癌组织源性外泌体通过转运miR-217抑制T24膀胱癌细胞铁下垂","authors":"Zhong-Ming Huang, Hai Wang, Zhi-Gang Ji","doi":"10.1002/em.22520","DOIUrl":null,"url":null,"abstract":"<p>It has been reported that miR-217 can inhibit the oncogenic activity and progression of bladder cancer (BCa) cells, but it has not been explored whether miR-217 is involved in the regulation of ferroptosis. In the present study, RNA transfection, real-time PCR, flow cytometry, Western blotting assays, immunofluorescence and ELISA were performed to explore the effects and mechanisms of miR-217 in BCa tissue-derived exosomes. We found that extracellular fluid from bladder cancer tissue promoted the growth and miR-217 expression of T24 cells and inhibited ferroptosis. MiR-217 was confirmed to inhibit ferroptosis in bladder cancer cells by RNA interference and functional assays. By cell membrane fluorescence probe (CM-Dil) labeling, inhibiting exosome secretion by GW4689 and exosome extraction, we determined that BCa tissue-derived exosomes transport miR-217 into T24 cells. Culture of T24 cells with extracellular fluid after RNA interference showed that exosomes carrying miR-217 derived from BCa tissues inhibited ferroptosis of T24 cells. We conclude that bladder cancer tissue-derived exosomes inhibit ferroptosis of T24 bladder cancer cells by transporting miR-217. The results of our study provide a new insight into the progression of bladder cancer.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":"64 1","pages":"39-49"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bladder cancer tissue-derived exosomes suppress ferroptosis of T24 bladder cancer cells by transporting miR-217\",\"authors\":\"Zhong-Ming Huang, Hai Wang, Zhi-Gang Ji\",\"doi\":\"10.1002/em.22520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It has been reported that miR-217 can inhibit the oncogenic activity and progression of bladder cancer (BCa) cells, but it has not been explored whether miR-217 is involved in the regulation of ferroptosis. In the present study, RNA transfection, real-time PCR, flow cytometry, Western blotting assays, immunofluorescence and ELISA were performed to explore the effects and mechanisms of miR-217 in BCa tissue-derived exosomes. We found that extracellular fluid from bladder cancer tissue promoted the growth and miR-217 expression of T24 cells and inhibited ferroptosis. MiR-217 was confirmed to inhibit ferroptosis in bladder cancer cells by RNA interference and functional assays. By cell membrane fluorescence probe (CM-Dil) labeling, inhibiting exosome secretion by GW4689 and exosome extraction, we determined that BCa tissue-derived exosomes transport miR-217 into T24 cells. Culture of T24 cells with extracellular fluid after RNA interference showed that exosomes carrying miR-217 derived from BCa tissues inhibited ferroptosis of T24 cells. We conclude that bladder cancer tissue-derived exosomes inhibit ferroptosis of T24 bladder cancer cells by transporting miR-217. The results of our study provide a new insight into the progression of bladder cancer.</p>\",\"PeriodicalId\":11791,\"journal\":{\"name\":\"Environmental and Molecular Mutagenesis\",\"volume\":\"64 1\",\"pages\":\"39-49\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Molecular Mutagenesis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/em.22520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/em.22520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bladder cancer tissue-derived exosomes suppress ferroptosis of T24 bladder cancer cells by transporting miR-217
It has been reported that miR-217 can inhibit the oncogenic activity and progression of bladder cancer (BCa) cells, but it has not been explored whether miR-217 is involved in the regulation of ferroptosis. In the present study, RNA transfection, real-time PCR, flow cytometry, Western blotting assays, immunofluorescence and ELISA were performed to explore the effects and mechanisms of miR-217 in BCa tissue-derived exosomes. We found that extracellular fluid from bladder cancer tissue promoted the growth and miR-217 expression of T24 cells and inhibited ferroptosis. MiR-217 was confirmed to inhibit ferroptosis in bladder cancer cells by RNA interference and functional assays. By cell membrane fluorescence probe (CM-Dil) labeling, inhibiting exosome secretion by GW4689 and exosome extraction, we determined that BCa tissue-derived exosomes transport miR-217 into T24 cells. Culture of T24 cells with extracellular fluid after RNA interference showed that exosomes carrying miR-217 derived from BCa tissues inhibited ferroptosis of T24 cells. We conclude that bladder cancer tissue-derived exosomes inhibit ferroptosis of T24 bladder cancer cells by transporting miR-217. The results of our study provide a new insight into the progression of bladder cancer.
期刊介绍:
Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.