Heng Weng , Qing Wang , Ran Ye, Yamei Bai, Hui Yang, Guihua Xu, Qiuqin Wang
{"title":"预防性经皮穴位电刺激对阿尔茨海默病模型大鼠抗氧化性认知障碍的改善作用","authors":"Heng Weng , Qing Wang , Ran Ye, Yamei Bai, Hui Yang, Guihua Xu, Qiuqin Wang","doi":"10.1016/j.imr.2023.100946","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease. Oxidative stress emerges at the early AD stage. As a non-invasive therapy with few adverse reactions, transcutaneous electrical acupoint stimulation (TEAS) combines acupuncture points of traditional Chinese medicine (TCM) and electrical stimulation. This study aimed to investigate the amelioration effects of preventive TEAS treatment (P-TEAS) on cognitive impairment and oxidative stress in AD model rats.</p></div><div><h3>Methods</h3><p>The AD model was established via subcutaneous injections of D-galactose (D-gal, 120 mg/kg/d) into the back of neck for 9 weeks in Sprague Dawley (SD) rats to simulate the oxidative stress in the early AD stage. On the first day of the 10th week, Aβ<sub>1–42</sub> (1 μg/μl) was injected into the CA1 regions of the bilateral hippocampus. P-TEAS was synchronized from the first day of subcutaneous D-gal injections for 9 weeks.</p></div><div><h3>Results</h3><p>Empirical measurements showed that P-TEAS can improve the spatial memory ability of AD model rats in the Morris water maze. Superoxide dismutase (SOD) was upregulated in the P-TEAS group. Through the detection of the anti-oxidative stress signaling pathway, namely, Kelch-like ECH-associated protein 1 (Keap1)/ NFE2-related factor 2 (Nrf2), it was found that P-TEAS could promote Nrf2 entering into the nucleus and upregulating the production of protective factors heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). It was also found that P-TEAS could downregulate the expressions of BCL2-associated X-protein (Bax), caspase 3, and caspase 9 to inhibit neuronal apoptosis.</p></div><div><h3>Conclusions</h3><p>P-TEAS has similar efficacy to electroacupuncture in preventing AD occurrence and development. P-TEAS is a new non-invasive intervention therapy for the prevention of AD.</p></div>","PeriodicalId":13644,"journal":{"name":"Integrative Medicine Research","volume":"12 2","pages":"Article 100946"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/84/6e/main.PMC10176170.pdf","citationCount":"0","resultStr":"{\"title\":\"Anti-oxidative-initiated cognitive impairment amelioration in Alzheimer's disease model rats through preventive transcutaneous electrical acupoint stimulation\",\"authors\":\"Heng Weng , Qing Wang , Ran Ye, Yamei Bai, Hui Yang, Guihua Xu, Qiuqin Wang\",\"doi\":\"10.1016/j.imr.2023.100946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease. Oxidative stress emerges at the early AD stage. As a non-invasive therapy with few adverse reactions, transcutaneous electrical acupoint stimulation (TEAS) combines acupuncture points of traditional Chinese medicine (TCM) and electrical stimulation. This study aimed to investigate the amelioration effects of preventive TEAS treatment (P-TEAS) on cognitive impairment and oxidative stress in AD model rats.</p></div><div><h3>Methods</h3><p>The AD model was established via subcutaneous injections of D-galactose (D-gal, 120 mg/kg/d) into the back of neck for 9 weeks in Sprague Dawley (SD) rats to simulate the oxidative stress in the early AD stage. On the first day of the 10th week, Aβ<sub>1–42</sub> (1 μg/μl) was injected into the CA1 regions of the bilateral hippocampus. P-TEAS was synchronized from the first day of subcutaneous D-gal injections for 9 weeks.</p></div><div><h3>Results</h3><p>Empirical measurements showed that P-TEAS can improve the spatial memory ability of AD model rats in the Morris water maze. Superoxide dismutase (SOD) was upregulated in the P-TEAS group. Through the detection of the anti-oxidative stress signaling pathway, namely, Kelch-like ECH-associated protein 1 (Keap1)/ NFE2-related factor 2 (Nrf2), it was found that P-TEAS could promote Nrf2 entering into the nucleus and upregulating the production of protective factors heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). It was also found that P-TEAS could downregulate the expressions of BCL2-associated X-protein (Bax), caspase 3, and caspase 9 to inhibit neuronal apoptosis.</p></div><div><h3>Conclusions</h3><p>P-TEAS has similar efficacy to electroacupuncture in preventing AD occurrence and development. P-TEAS is a new non-invasive intervention therapy for the prevention of AD.</p></div>\",\"PeriodicalId\":13644,\"journal\":{\"name\":\"Integrative Medicine Research\",\"volume\":\"12 2\",\"pages\":\"Article 100946\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/84/6e/main.PMC10176170.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Medicine Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213422023000252\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Medicine Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213422023000252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Anti-oxidative-initiated cognitive impairment amelioration in Alzheimer's disease model rats through preventive transcutaneous electrical acupoint stimulation
Background
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease. Oxidative stress emerges at the early AD stage. As a non-invasive therapy with few adverse reactions, transcutaneous electrical acupoint stimulation (TEAS) combines acupuncture points of traditional Chinese medicine (TCM) and electrical stimulation. This study aimed to investigate the amelioration effects of preventive TEAS treatment (P-TEAS) on cognitive impairment and oxidative stress in AD model rats.
Methods
The AD model was established via subcutaneous injections of D-galactose (D-gal, 120 mg/kg/d) into the back of neck for 9 weeks in Sprague Dawley (SD) rats to simulate the oxidative stress in the early AD stage. On the first day of the 10th week, Aβ1–42 (1 μg/μl) was injected into the CA1 regions of the bilateral hippocampus. P-TEAS was synchronized from the first day of subcutaneous D-gal injections for 9 weeks.
Results
Empirical measurements showed that P-TEAS can improve the spatial memory ability of AD model rats in the Morris water maze. Superoxide dismutase (SOD) was upregulated in the P-TEAS group. Through the detection of the anti-oxidative stress signaling pathway, namely, Kelch-like ECH-associated protein 1 (Keap1)/ NFE2-related factor 2 (Nrf2), it was found that P-TEAS could promote Nrf2 entering into the nucleus and upregulating the production of protective factors heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). It was also found that P-TEAS could downregulate the expressions of BCL2-associated X-protein (Bax), caspase 3, and caspase 9 to inhibit neuronal apoptosis.
Conclusions
P-TEAS has similar efficacy to electroacupuncture in preventing AD occurrence and development. P-TEAS is a new non-invasive intervention therapy for the prevention of AD.
期刊介绍:
Integrative Medicine Research (IMR) is a quarterly, peer-reviewed journal focused on scientific research for integrative medicine including traditional medicine (emphasis on acupuncture and herbal medicine), complementary and alternative medicine, and systems medicine. The journal includes papers on basic research, clinical research, methodology, theory, computational analysis and modelling, topical reviews, medical history, education and policy based on physiology, pathology, diagnosis and the systems approach in the field of integrative medicine.