替诺福韦-二磷酸抑制线粒体复合体V (ATP合酶)所致肾功能障碍。

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2023-01-01 DOI:10.1093/function/zqad010
Nicolas Sluis-Cremer
{"title":"替诺福韦-二磷酸抑制线粒体复合体V (ATP合酶)所致肾功能障碍。","authors":"Nicolas Sluis-Cremer","doi":"10.1093/function/zqad010","DOIUrl":null,"url":null,"abstract":"Prescription drugs are a common cause of kidney injury. Druginduced nephrotoxicity, however, is a complex process, and likely involves a combination of factors, including (i) drug characteristics (eg, solubility, structure, and charge); (ii) drug dose and duration of therapy; (iii) inherent drug toxicity; (iv) renal metabolism and excretion of the drug; and (v) patient characteristics that enhance their risk for kidney injury. The mechanisms of drug-induced nephrotoxicity and prevention strategies have been reviewed extensively elsewhere.1,2 Tenofovir disoproxil fumarate (TDF) is a nucleoside reverse transcriptase inhibitor used to treat HIV and HBV infections. TDF therapy, however, has been associated with renal impairment, characterized by a decline in glomerular filtration rate and proximal tubular dysfunction.3 TDF is a prodrug that is rapidly metabolized to the active component tenofovir in plasma. In cells, tenofvoir is metabolized to its active diphosphate form by adenylate monophosphate kinase (tenofovir monophosphate) and 5′-nucleoside diphosphate (tenofovir diphosphate).4 Renal injury is likely related to intracellular tenofovir accumulation in proximal tubule cells. A molecular mechanism of TDF-induced renal toxicity, however, is lacking, but it is thought to be via mitochondrial depletion and structural change, including size and shape changes, and leakage of mitochondrial proteins into the cytosol, with resultant DNA damage, which may even induce apoptosis of the cell. In a recent study, Pearson et al. developed an innovative approach to screen for disease-related functional defects in RPTEC/TERT1 cells, a well-differentiated human-derived cell line that replicates many of the major characteristics of proximal tubular kidney cells in vivo.5 The RPTEC/TERT1 cells were exposed to TDF, and high-throughput imaging was used to generate quantitative readouts of solute transport and mitochondrial morphology, which facilitated development of treatment protocols that reproduced well-described features in patients. By using multiparametric metabolic profiling, including metabolomic screening, oxygen consumption measurements, and RNA-sequencing, the authors determined a molecular fingerprint of TDF toxicity. They found that TDF results in a dose-dependent decrease in mitochondrial ATP synthase, or complex V (EC 3.6.3.14) activity and expression, whereas other mitochondrial functions and pathways were well preserved. Tenofovir disphosphate was found to directly inhibit complex V. Downregulation of complex V expression was also observed in human biopsies. Complex V synthesizes ATP from ADP in the mitochondrial matrix using the energy provided by the proton electrochemical gradient, and mutations in complex V give rise to severe mitochondrial disease phenotypes, ranging from neuropathy, ataxia, and retinitis pigmentosa to maternally inherited Leigh syndrome.6 Of note, in a rat model of TDF nephrotoxicity, the activities of the electron chain complexes I, II, IV, and V were also found to be inhibited.7 Collectively, these studies suggest that modulation of complex V activity and expression by TDF is a plausible mechanism for nephrotoxicity. There are, however, limitations associated with the Pearson et al. study. After oral absorption, TDF is rapidly converted to tenofovir in the plasma, and then intracellularly to the active tenofovir diphosphate. Tenofovir, and not TDF, is the primary metabolite that is excreted renally. In this study, the authors used very high concentrations of TDF (300–500μm). The negative charges of the phosphonate moiety of tenofovir reduce its cellular permeability, while TDF was developed to improve tenofovir permeability. Indeed, in antiviral assays in MT-2 cells,","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":"4 3","pages":"zqad010"},"PeriodicalIF":5.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Renal Dysfunction due to Tenofovir-Diphosphate Inhibition of Mitochondrial Complex V (ATP Synthase).\",\"authors\":\"Nicolas Sluis-Cremer\",\"doi\":\"10.1093/function/zqad010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prescription drugs are a common cause of kidney injury. Druginduced nephrotoxicity, however, is a complex process, and likely involves a combination of factors, including (i) drug characteristics (eg, solubility, structure, and charge); (ii) drug dose and duration of therapy; (iii) inherent drug toxicity; (iv) renal metabolism and excretion of the drug; and (v) patient characteristics that enhance their risk for kidney injury. The mechanisms of drug-induced nephrotoxicity and prevention strategies have been reviewed extensively elsewhere.1,2 Tenofovir disoproxil fumarate (TDF) is a nucleoside reverse transcriptase inhibitor used to treat HIV and HBV infections. TDF therapy, however, has been associated with renal impairment, characterized by a decline in glomerular filtration rate and proximal tubular dysfunction.3 TDF is a prodrug that is rapidly metabolized to the active component tenofovir in plasma. In cells, tenofvoir is metabolized to its active diphosphate form by adenylate monophosphate kinase (tenofovir monophosphate) and 5′-nucleoside diphosphate (tenofovir diphosphate).4 Renal injury is likely related to intracellular tenofovir accumulation in proximal tubule cells. A molecular mechanism of TDF-induced renal toxicity, however, is lacking, but it is thought to be via mitochondrial depletion and structural change, including size and shape changes, and leakage of mitochondrial proteins into the cytosol, with resultant DNA damage, which may even induce apoptosis of the cell. In a recent study, Pearson et al. developed an innovative approach to screen for disease-related functional defects in RPTEC/TERT1 cells, a well-differentiated human-derived cell line that replicates many of the major characteristics of proximal tubular kidney cells in vivo.5 The RPTEC/TERT1 cells were exposed to TDF, and high-throughput imaging was used to generate quantitative readouts of solute transport and mitochondrial morphology, which facilitated development of treatment protocols that reproduced well-described features in patients. By using multiparametric metabolic profiling, including metabolomic screening, oxygen consumption measurements, and RNA-sequencing, the authors determined a molecular fingerprint of TDF toxicity. They found that TDF results in a dose-dependent decrease in mitochondrial ATP synthase, or complex V (EC 3.6.3.14) activity and expression, whereas other mitochondrial functions and pathways were well preserved. Tenofovir disphosphate was found to directly inhibit complex V. Downregulation of complex V expression was also observed in human biopsies. Complex V synthesizes ATP from ADP in the mitochondrial matrix using the energy provided by the proton electrochemical gradient, and mutations in complex V give rise to severe mitochondrial disease phenotypes, ranging from neuropathy, ataxia, and retinitis pigmentosa to maternally inherited Leigh syndrome.6 Of note, in a rat model of TDF nephrotoxicity, the activities of the electron chain complexes I, II, IV, and V were also found to be inhibited.7 Collectively, these studies suggest that modulation of complex V activity and expression by TDF is a plausible mechanism for nephrotoxicity. There are, however, limitations associated with the Pearson et al. study. After oral absorption, TDF is rapidly converted to tenofovir in the plasma, and then intracellularly to the active tenofovir diphosphate. Tenofovir, and not TDF, is the primary metabolite that is excreted renally. In this study, the authors used very high concentrations of TDF (300–500μm). The negative charges of the phosphonate moiety of tenofovir reduce its cellular permeability, while TDF was developed to improve tenofovir permeability. Indeed, in antiviral assays in MT-2 cells,\",\"PeriodicalId\":73119,\"journal\":{\"name\":\"Function (Oxford, England)\",\"volume\":\"4 3\",\"pages\":\"zqad010\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Function (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/function/zqad010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Renal Dysfunction due to Tenofovir-Diphosphate Inhibition of Mitochondrial Complex V (ATP Synthase).
Prescription drugs are a common cause of kidney injury. Druginduced nephrotoxicity, however, is a complex process, and likely involves a combination of factors, including (i) drug characteristics (eg, solubility, structure, and charge); (ii) drug dose and duration of therapy; (iii) inherent drug toxicity; (iv) renal metabolism and excretion of the drug; and (v) patient characteristics that enhance their risk for kidney injury. The mechanisms of drug-induced nephrotoxicity and prevention strategies have been reviewed extensively elsewhere.1,2 Tenofovir disoproxil fumarate (TDF) is a nucleoside reverse transcriptase inhibitor used to treat HIV and HBV infections. TDF therapy, however, has been associated with renal impairment, characterized by a decline in glomerular filtration rate and proximal tubular dysfunction.3 TDF is a prodrug that is rapidly metabolized to the active component tenofovir in plasma. In cells, tenofvoir is metabolized to its active diphosphate form by adenylate monophosphate kinase (tenofovir monophosphate) and 5′-nucleoside diphosphate (tenofovir diphosphate).4 Renal injury is likely related to intracellular tenofovir accumulation in proximal tubule cells. A molecular mechanism of TDF-induced renal toxicity, however, is lacking, but it is thought to be via mitochondrial depletion and structural change, including size and shape changes, and leakage of mitochondrial proteins into the cytosol, with resultant DNA damage, which may even induce apoptosis of the cell. In a recent study, Pearson et al. developed an innovative approach to screen for disease-related functional defects in RPTEC/TERT1 cells, a well-differentiated human-derived cell line that replicates many of the major characteristics of proximal tubular kidney cells in vivo.5 The RPTEC/TERT1 cells were exposed to TDF, and high-throughput imaging was used to generate quantitative readouts of solute transport and mitochondrial morphology, which facilitated development of treatment protocols that reproduced well-described features in patients. By using multiparametric metabolic profiling, including metabolomic screening, oxygen consumption measurements, and RNA-sequencing, the authors determined a molecular fingerprint of TDF toxicity. They found that TDF results in a dose-dependent decrease in mitochondrial ATP synthase, or complex V (EC 3.6.3.14) activity and expression, whereas other mitochondrial functions and pathways were well preserved. Tenofovir disphosphate was found to directly inhibit complex V. Downregulation of complex V expression was also observed in human biopsies. Complex V synthesizes ATP from ADP in the mitochondrial matrix using the energy provided by the proton electrochemical gradient, and mutations in complex V give rise to severe mitochondrial disease phenotypes, ranging from neuropathy, ataxia, and retinitis pigmentosa to maternally inherited Leigh syndrome.6 Of note, in a rat model of TDF nephrotoxicity, the activities of the electron chain complexes I, II, IV, and V were also found to be inhibited.7 Collectively, these studies suggest that modulation of complex V activity and expression by TDF is a plausible mechanism for nephrotoxicity. There are, however, limitations associated with the Pearson et al. study. After oral absorption, TDF is rapidly converted to tenofovir in the plasma, and then intracellularly to the active tenofovir diphosphate. Tenofovir, and not TDF, is the primary metabolite that is excreted renally. In this study, the authors used very high concentrations of TDF (300–500μm). The negative charges of the phosphonate moiety of tenofovir reduce its cellular permeability, while TDF was developed to improve tenofovir permeability. Indeed, in antiviral assays in MT-2 cells,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Intrinsic Skeletal Muscle Function and Contraction-Stimulated Glucose Uptake Do Not Vary by Time-of-Day in Mice. Impaired Neurocirculatory Control in Chronic Kidney Disease: New Evidence for Blunted Sympathetic Baroreflex and Reduced Sympathetic Transduction. Malaria and Hypertension: What Is the Direction of Association? Exploring Circadian Changes in Muscle Physiology: Methodological Considerations. A Skeletal Muscle-Mediated Anticontractile Response on Vascular Tone: Unraveling the Lactate-AMPK-NOS1 Pathway in Femoral Arteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1