Daniela Alvarez-Vargas, Sirui Wan, Lynn S Fuchs, Alice Klein, Drew H Bailey
{"title":"减少技能培养干预影响预测偏差的设计和分析特点。","authors":"Daniela Alvarez-Vargas, Sirui Wan, Lynn S Fuchs, Alice Klein, Drew H Bailey","doi":"10.1080/19345747.2022.2093298","DOIUrl":null,"url":null,"abstract":"<p><p>Despite policy relevance, longer-term evaluations of educational interventions are relatively rare. A common approach to this problem has been to rely on longitudinal research to determine targets for intervention by looking at the correlation between children's early skills (e.g., preschool numeracy) and medium-term outcomes (e.g., first-grade math achievement). However, this approach has sometimes over-or under-predicted the long-term effects (e.g., 5th-grade math achievement) of successfully improving early math skills. Using a within-study comparison design, we assess various approaches to forecasting medium-term impacts of early math skill-building interventions. The most accurate forecasts were obtained when including comprehensive baseline controls and using a combination of conceptually proximal and distal short-term outcomes (in the nonexperimental longitudinal data). Researchers can use our approach to establish a set of designs and analyses to predict the impacts of their interventions up to two years post-treatment. The approach can also be applied to power analyses, model checking, and theory revisions to understand mechanisms contributing to medium-term outcomes.</p>","PeriodicalId":47260,"journal":{"name":"Journal of Research on Educational Effectiveness","volume":"16 2","pages":"271-299"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181816/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and Analytic Features for Reducing Biases in Skill-Building Intervention Impact Forecasts.\",\"authors\":\"Daniela Alvarez-Vargas, Sirui Wan, Lynn S Fuchs, Alice Klein, Drew H Bailey\",\"doi\":\"10.1080/19345747.2022.2093298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite policy relevance, longer-term evaluations of educational interventions are relatively rare. A common approach to this problem has been to rely on longitudinal research to determine targets for intervention by looking at the correlation between children's early skills (e.g., preschool numeracy) and medium-term outcomes (e.g., first-grade math achievement). However, this approach has sometimes over-or under-predicted the long-term effects (e.g., 5th-grade math achievement) of successfully improving early math skills. Using a within-study comparison design, we assess various approaches to forecasting medium-term impacts of early math skill-building interventions. The most accurate forecasts were obtained when including comprehensive baseline controls and using a combination of conceptually proximal and distal short-term outcomes (in the nonexperimental longitudinal data). Researchers can use our approach to establish a set of designs and analyses to predict the impacts of their interventions up to two years post-treatment. The approach can also be applied to power analyses, model checking, and theory revisions to understand mechanisms contributing to medium-term outcomes.</p>\",\"PeriodicalId\":47260,\"journal\":{\"name\":\"Journal of Research on Educational Effectiveness\",\"volume\":\"16 2\",\"pages\":\"271-299\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research on Educational Effectiveness\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/19345747.2022.2093298\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research on Educational Effectiveness","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/19345747.2022.2093298","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Design and Analytic Features for Reducing Biases in Skill-Building Intervention Impact Forecasts.
Despite policy relevance, longer-term evaluations of educational interventions are relatively rare. A common approach to this problem has been to rely on longitudinal research to determine targets for intervention by looking at the correlation between children's early skills (e.g., preschool numeracy) and medium-term outcomes (e.g., first-grade math achievement). However, this approach has sometimes over-or under-predicted the long-term effects (e.g., 5th-grade math achievement) of successfully improving early math skills. Using a within-study comparison design, we assess various approaches to forecasting medium-term impacts of early math skill-building interventions. The most accurate forecasts were obtained when including comprehensive baseline controls and using a combination of conceptually proximal and distal short-term outcomes (in the nonexperimental longitudinal data). Researchers can use our approach to establish a set of designs and analyses to predict the impacts of their interventions up to two years post-treatment. The approach can also be applied to power analyses, model checking, and theory revisions to understand mechanisms contributing to medium-term outcomes.
期刊介绍:
As the flagship publication for the Society for Research on Educational Effectiveness, the Journal of Research on Educational Effectiveness (JREE) publishes original articles from the multidisciplinary community of researchers who are committed to applying principles of scientific inquiry to the study of educational problems. Articles published in JREE should advance our knowledge of factors important for educational success and/or improve our ability to conduct further disciplined studies of pressing educational problems. JREE welcomes manuscripts that fit into one of the following categories: (1) intervention, evaluation, and policy studies; (2) theory, contexts, and mechanisms; and (3) methodological studies. The first category includes studies that focus on process and implementation and seek to demonstrate causal claims in educational research. The second category includes meta-analyses and syntheses, descriptive studies that illuminate educational conditions and contexts, and studies that rigorously investigate education processes and mechanism. The third category includes studies that advance our understanding of theoretical and technical features of measurement and research design and describe advances in data analysis and data modeling. To establish a stronger connection between scientific evidence and educational practice, studies submitted to JREE should focus on pressing problems found in classrooms and schools. Studies that help advance our understanding and demonstrate effectiveness related to challenges in reading, mathematics education, and science education are especially welcome as are studies related to cognitive functions, social processes, organizational factors, and cultural features that mediate and/or moderate critical educational outcomes. On occasion, invited responses to JREE articles and rejoinders to those responses will be included in an issue.