{"title":"CD34+ 细胞在缺血/再灌注损伤后心脏重塑过程中的多系统贡献。","authors":"Jun Xie, Liujun Jiang, Junzhuo Wang, Yong Yin, Ruilin Wang, Luping Du, Ting Chen, Zhichao Ni, Shuaihua Qiao, Hui Gong, Biao Xu, Qingbo Xu","doi":"10.1007/s00395-023-00981-8","DOIUrl":null,"url":null,"abstract":"<p><p>The ambiguous results of multiple CD34<sup>+</sup> cell-based therapeutic trials for patients with heart disease have halted the large-scale application of stem/progenitor cell treatment. This study aimed to delineate the biological functions of heterogenous CD34<sup>+</sup> cell populations and investigate the net effect of CD34<sup>+</sup> cell intervention on cardiac remodeling. We confirmed, by combining single-cell RNA sequencing on human and mouse ischemic hearts and an inducible Cd34 lineage-tracing mouse model, that Cd34<sup>+</sup> cells mainly contributed to the commitment of mesenchymal cells, endothelial cells (ECs), and monocytes/macrophages during heart remodeling with distinct pathological functions. The Cd34<sup>+</sup>-lineage-activated mesenchymal cells were responsible for cardiac fibrosis, while CD34<sup>+</sup>Sca-1<sup>high</sup> was an active precursor and intercellular player that facilitated Cd34<sup>+</sup>-lineage angiogenic EC-induced postinjury vessel development. We found through bone marrow transplantation that bone marrow-derived CD34<sup>+</sup> cells only accounted for inflammatory response. We confirmed using a Cd34-CreER<sup>T2</sup>; R26-DTA mouse model that the depletion of Cd34<sup>+</sup> cells could alleviate the severity of ventricular fibrosis after ischemia/reperfusion (I/R) injury with improved cardiac function. This study provided a transcriptional and cellular landscape of CD34<sup>+</sup> cells in normal and ischemic hearts and illustrated that the heterogeneous population of Cd34<sup>+</sup> cell-derived cells served as crucial contributors to cardiac remodeling and function after the I/R injury, with their capacity to generate diverse cellular lineages.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163140/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multilineage contribution of CD34<sup>+</sup> cells in cardiac remodeling after ischemia/reperfusion injury.\",\"authors\":\"Jun Xie, Liujun Jiang, Junzhuo Wang, Yong Yin, Ruilin Wang, Luping Du, Ting Chen, Zhichao Ni, Shuaihua Qiao, Hui Gong, Biao Xu, Qingbo Xu\",\"doi\":\"10.1007/s00395-023-00981-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ambiguous results of multiple CD34<sup>+</sup> cell-based therapeutic trials for patients with heart disease have halted the large-scale application of stem/progenitor cell treatment. This study aimed to delineate the biological functions of heterogenous CD34<sup>+</sup> cell populations and investigate the net effect of CD34<sup>+</sup> cell intervention on cardiac remodeling. We confirmed, by combining single-cell RNA sequencing on human and mouse ischemic hearts and an inducible Cd34 lineage-tracing mouse model, that Cd34<sup>+</sup> cells mainly contributed to the commitment of mesenchymal cells, endothelial cells (ECs), and monocytes/macrophages during heart remodeling with distinct pathological functions. The Cd34<sup>+</sup>-lineage-activated mesenchymal cells were responsible for cardiac fibrosis, while CD34<sup>+</sup>Sca-1<sup>high</sup> was an active precursor and intercellular player that facilitated Cd34<sup>+</sup>-lineage angiogenic EC-induced postinjury vessel development. We found through bone marrow transplantation that bone marrow-derived CD34<sup>+</sup> cells only accounted for inflammatory response. We confirmed using a Cd34-CreER<sup>T2</sup>; R26-DTA mouse model that the depletion of Cd34<sup>+</sup> cells could alleviate the severity of ventricular fibrosis after ischemia/reperfusion (I/R) injury with improved cardiac function. This study provided a transcriptional and cellular landscape of CD34<sup>+</sup> cells in normal and ischemic hearts and illustrated that the heterogeneous population of Cd34<sup>+</sup> cell-derived cells served as crucial contributors to cardiac remodeling and function after the I/R injury, with their capacity to generate diverse cellular lineages.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-023-00981-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-023-00981-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Multilineage contribution of CD34+ cells in cardiac remodeling after ischemia/reperfusion injury.
The ambiguous results of multiple CD34+ cell-based therapeutic trials for patients with heart disease have halted the large-scale application of stem/progenitor cell treatment. This study aimed to delineate the biological functions of heterogenous CD34+ cell populations and investigate the net effect of CD34+ cell intervention on cardiac remodeling. We confirmed, by combining single-cell RNA sequencing on human and mouse ischemic hearts and an inducible Cd34 lineage-tracing mouse model, that Cd34+ cells mainly contributed to the commitment of mesenchymal cells, endothelial cells (ECs), and monocytes/macrophages during heart remodeling with distinct pathological functions. The Cd34+-lineage-activated mesenchymal cells were responsible for cardiac fibrosis, while CD34+Sca-1high was an active precursor and intercellular player that facilitated Cd34+-lineage angiogenic EC-induced postinjury vessel development. We found through bone marrow transplantation that bone marrow-derived CD34+ cells only accounted for inflammatory response. We confirmed using a Cd34-CreERT2; R26-DTA mouse model that the depletion of Cd34+ cells could alleviate the severity of ventricular fibrosis after ischemia/reperfusion (I/R) injury with improved cardiac function. This study provided a transcriptional and cellular landscape of CD34+ cells in normal and ischemic hearts and illustrated that the heterogeneous population of Cd34+ cell-derived cells served as crucial contributors to cardiac remodeling and function after the I/R injury, with their capacity to generate diverse cellular lineages.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology