Anna Lia Sullivan, Ryan C Locke, Rachel K Klink, Connor C Leek, James E Carpenter, Megan L Killian
{"title":"大鼠肩袖肌腱-骨附着体大小缺损损伤的力学及不同愈合效果。","authors":"Anna Lia Sullivan, Ryan C Locke, Rachel K Klink, Connor C Leek, James E Carpenter, Megan L Killian","doi":"10.1080/03008207.2022.2152334","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Rotator cuff tear size affects clinical outcomes following rotator cuff repair and is correlated with the risk of recurrent tendon defects. This study aimed to understand if and how the initial defect size influences the structural and mechanical outcomes of the injured rotator cuff attachment in vivo.</p><p><strong>Methods: </strong>Full-thickness punch injuries of the infraspinatus tendon-bone attachment in Long Evans rats were created to compare differences in healing outcomes between small and large defects. Biomechanical properties, gross morphology, bone remodeling, and cell and tissue morphology were assessed at both 3- and 8-weeks of healing.</p><p><strong>Results: </strong>At the time of injury (no healing), large defects had decreased mechanical properties compared to small defects, and both defect sizes had decreased mechanical properties compared to intact attachments. However, the mechanical properties of the two defect groups were not significantly different from each other after 8-weeks of healing and significantly improved compared to no healing but failed to return to intact levels. Local bone volume at the defect site was higher in large compared to small defects on average and increased from 3- to 8-weeks. In contrast, bone quality decreased from 3- to 8-weeks of healing and these changes were not dependent on defect size. Qualitatively, large defects had increased collagen disorganization and neovascularization compared to small defects.</p><p><strong>Discussion: </strong>In this study, we showed that both large and small defects did not regenerate the mechanical and structural integrity of the intact rat rotator cuff attachment following healing in vivo after 8 weeks of healing.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164669/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanics and differential healing outcomes of small and large defect injuries of the tendon-bone attachment in the rat rotator cuff.\",\"authors\":\"Anna Lia Sullivan, Ryan C Locke, Rachel K Klink, Connor C Leek, James E Carpenter, Megan L Killian\",\"doi\":\"10.1080/03008207.2022.2152334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Rotator cuff tear size affects clinical outcomes following rotator cuff repair and is correlated with the risk of recurrent tendon defects. This study aimed to understand if and how the initial defect size influences the structural and mechanical outcomes of the injured rotator cuff attachment in vivo.</p><p><strong>Methods: </strong>Full-thickness punch injuries of the infraspinatus tendon-bone attachment in Long Evans rats were created to compare differences in healing outcomes between small and large defects. Biomechanical properties, gross morphology, bone remodeling, and cell and tissue morphology were assessed at both 3- and 8-weeks of healing.</p><p><strong>Results: </strong>At the time of injury (no healing), large defects had decreased mechanical properties compared to small defects, and both defect sizes had decreased mechanical properties compared to intact attachments. However, the mechanical properties of the two defect groups were not significantly different from each other after 8-weeks of healing and significantly improved compared to no healing but failed to return to intact levels. Local bone volume at the defect site was higher in large compared to small defects on average and increased from 3- to 8-weeks. In contrast, bone quality decreased from 3- to 8-weeks of healing and these changes were not dependent on defect size. Qualitatively, large defects had increased collagen disorganization and neovascularization compared to small defects.</p><p><strong>Discussion: </strong>In this study, we showed that both large and small defects did not regenerate the mechanical and structural integrity of the intact rat rotator cuff attachment following healing in vivo after 8 weeks of healing.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2022.2152334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2152334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mechanics and differential healing outcomes of small and large defect injuries of the tendon-bone attachment in the rat rotator cuff.
Introduction: Rotator cuff tear size affects clinical outcomes following rotator cuff repair and is correlated with the risk of recurrent tendon defects. This study aimed to understand if and how the initial defect size influences the structural and mechanical outcomes of the injured rotator cuff attachment in vivo.
Methods: Full-thickness punch injuries of the infraspinatus tendon-bone attachment in Long Evans rats were created to compare differences in healing outcomes between small and large defects. Biomechanical properties, gross morphology, bone remodeling, and cell and tissue morphology were assessed at both 3- and 8-weeks of healing.
Results: At the time of injury (no healing), large defects had decreased mechanical properties compared to small defects, and both defect sizes had decreased mechanical properties compared to intact attachments. However, the mechanical properties of the two defect groups were not significantly different from each other after 8-weeks of healing and significantly improved compared to no healing but failed to return to intact levels. Local bone volume at the defect site was higher in large compared to small defects on average and increased from 3- to 8-weeks. In contrast, bone quality decreased from 3- to 8-weeks of healing and these changes were not dependent on defect size. Qualitatively, large defects had increased collagen disorganization and neovascularization compared to small defects.
Discussion: In this study, we showed that both large and small defects did not regenerate the mechanical and structural integrity of the intact rat rotator cuff attachment following healing in vivo after 8 weeks of healing.