{"title":"通过指导提高科学、技术、工程和数学以及科学、技术、工程和数学密集型卫生专业的多样性。","authors":"Carla A Romney, Andrew J Grosovsky","doi":"10.1080/09553002.2021.1988182","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This manuscript is a scholarly perspective on the crucially important topic of mentoring in STEM and the STEM-intensive health professions (STEM+). Our purpose is to share our understanding of this subject as a means to mitigate the persistent underrepresentation in these fields and to offer our recommendations.</p><p><strong>Materials & methods: </strong>This manuscript draws on the literature and our experiences to develop recommendations for improving outcomes for diverse populations of undergraduate students who are pursuing majors in the STEM fields and aspire to careers in the biomedical sciences and/or STEM-intensive health professions.</p><p><strong>Results: </strong>Undergraduate learning communities and mentored research activities promote continued engagement in STEM and also provide a competitive foundation for careers in these fields.</p><p><strong>Conclusions: </strong>(1) Mentoring must be brought to scale through clearly articulated institutional and disciplinary prioritization of learning communities, with attendant assessment to monitor the impact of creating an environment that supports diverse students from underrepresented backgrounds. (2) Individual faculty members and principal investigators affiliated with academic institutions and stand-alone research facilities can enhance their mentoring role by welcoming underrepresented undergraduates into their laboratories. (3) Faculty members, administrators, and staff members must commit themselves to the success of each student who enrolls in a STEM + program, rather than accepting high rates of failure as inevitable. (4) Increased interactions between first-year students and faculty members through experiences in mentored learning communities that promote authentic engagement and discovery are key to promoting the retention of diverse populations of students who are underrepresented in the STEM + fields. (5) Learning communities can amplify the impact of an individual mentor. (6) Barriers to student success, such as weak preparation from high school courses, must be proactively and effectively addressed.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 6","pages":"983-989"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676100/pdf/","citationCount":"2","resultStr":"{\"title\":\"Mentoring to enhance diversity in STEM and STEM-intensive health professions.\",\"authors\":\"Carla A Romney, Andrew J Grosovsky\",\"doi\":\"10.1080/09553002.2021.1988182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This manuscript is a scholarly perspective on the crucially important topic of mentoring in STEM and the STEM-intensive health professions (STEM+). Our purpose is to share our understanding of this subject as a means to mitigate the persistent underrepresentation in these fields and to offer our recommendations.</p><p><strong>Materials & methods: </strong>This manuscript draws on the literature and our experiences to develop recommendations for improving outcomes for diverse populations of undergraduate students who are pursuing majors in the STEM fields and aspire to careers in the biomedical sciences and/or STEM-intensive health professions.</p><p><strong>Results: </strong>Undergraduate learning communities and mentored research activities promote continued engagement in STEM and also provide a competitive foundation for careers in these fields.</p><p><strong>Conclusions: </strong>(1) Mentoring must be brought to scale through clearly articulated institutional and disciplinary prioritization of learning communities, with attendant assessment to monitor the impact of creating an environment that supports diverse students from underrepresented backgrounds. (2) Individual faculty members and principal investigators affiliated with academic institutions and stand-alone research facilities can enhance their mentoring role by welcoming underrepresented undergraduates into their laboratories. (3) Faculty members, administrators, and staff members must commit themselves to the success of each student who enrolls in a STEM + program, rather than accepting high rates of failure as inevitable. (4) Increased interactions between first-year students and faculty members through experiences in mentored learning communities that promote authentic engagement and discovery are key to promoting the retention of diverse populations of students who are underrepresented in the STEM + fields. (5) Learning communities can amplify the impact of an individual mentor. (6) Barriers to student success, such as weak preparation from high school courses, must be proactively and effectively addressed.</p>\",\"PeriodicalId\":14261,\"journal\":{\"name\":\"International Journal of Radiation Biology\",\"volume\":\"99 6\",\"pages\":\"983-989\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676100/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2021.1988182\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2021.1988182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Mentoring to enhance diversity in STEM and STEM-intensive health professions.
Purpose: This manuscript is a scholarly perspective on the crucially important topic of mentoring in STEM and the STEM-intensive health professions (STEM+). Our purpose is to share our understanding of this subject as a means to mitigate the persistent underrepresentation in these fields and to offer our recommendations.
Materials & methods: This manuscript draws on the literature and our experiences to develop recommendations for improving outcomes for diverse populations of undergraduate students who are pursuing majors in the STEM fields and aspire to careers in the biomedical sciences and/or STEM-intensive health professions.
Results: Undergraduate learning communities and mentored research activities promote continued engagement in STEM and also provide a competitive foundation for careers in these fields.
Conclusions: (1) Mentoring must be brought to scale through clearly articulated institutional and disciplinary prioritization of learning communities, with attendant assessment to monitor the impact of creating an environment that supports diverse students from underrepresented backgrounds. (2) Individual faculty members and principal investigators affiliated with academic institutions and stand-alone research facilities can enhance their mentoring role by welcoming underrepresented undergraduates into their laboratories. (3) Faculty members, administrators, and staff members must commit themselves to the success of each student who enrolls in a STEM + program, rather than accepting high rates of failure as inevitable. (4) Increased interactions between first-year students and faculty members through experiences in mentored learning communities that promote authentic engagement and discovery are key to promoting the retention of diverse populations of students who are underrepresented in the STEM + fields. (5) Learning communities can amplify the impact of an individual mentor. (6) Barriers to student success, such as weak preparation from high school courses, must be proactively and effectively addressed.
期刊介绍:
The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.