Kim Van Vossel, Julie Hardeel, Freek Van de Casteele, Sarah de Jager, Eline Lievens, Jan Boone, Wim Derave
{"title":"肌肉类型影响阻力训练中失败的重复次数。","authors":"Kim Van Vossel, Julie Hardeel, Freek Van de Casteele, Sarah de Jager, Eline Lievens, Jan Boone, Wim Derave","doi":"10.1080/17461391.2023.2207077","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined whether muscle typology (muscle fibre type composition) is related to maximal strength and whether it can explain the high inter-individual variability in number of repetitions to failure during resistance training. Ninety-five resistance training novices (57 males) were assessed for their maximal isometric knee extension strength and muscle typology. Muscle typology was estimated by measuring carnosine in the soleus, gastrocnemius and/or vastus lateralis using proton magnetic resonance spectroscopy. Forty-four subjects (22 males) performed dynamic strength tests (1RM) and 3 sets of leg extensions and curls to failure (60%1RM) to determine the association between muscle typology and (total) number of repetitions. Twenty-one subjects performed additional biceps curls and triceps extensions (60%1RM) to assess influence of exercise, 23 subjects performed additional leg extensions and curls at 80% and 40%1RM to evaluate influence of training load. There was a weak but significant relationship between muscle typology and maximal isometric strength (<i>r</i> = 0.22, <i>p</i> = 0.03) favouring the fast typology individuals. Slow and fast typology individuals did not differ in upper arm and upper leg 1RM. Total number of repetitions was related to muscle typology at 80% (<i>r</i> = -0.42; <i>p</i> = 0.04) and 60% (<i>p</i> = -0.44; <i>p</i> = 0.003) but not at 40%1RM. Slow typology individuals performed more repetitions to failure at 60%1RM in the leg extension (<i>p</i> = 0.03), leg curl (<i>p</i> = 0.01) and biceps curl (<i>p</i> = 0.02). In conclusion, muscle typology has a small contribution to maximal isometric strength but not dynamic strength and partly determines the number of repetitions to failure during resistance training. This insight can help individualizing resistance training prescriptions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Muscle typology influences the number of repetitions to failure during resistance training.\",\"authors\":\"Kim Van Vossel, Julie Hardeel, Freek Van de Casteele, Sarah de Jager, Eline Lievens, Jan Boone, Wim Derave\",\"doi\":\"10.1080/17461391.2023.2207077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined whether muscle typology (muscle fibre type composition) is related to maximal strength and whether it can explain the high inter-individual variability in number of repetitions to failure during resistance training. Ninety-five resistance training novices (57 males) were assessed for their maximal isometric knee extension strength and muscle typology. Muscle typology was estimated by measuring carnosine in the soleus, gastrocnemius and/or vastus lateralis using proton magnetic resonance spectroscopy. Forty-four subjects (22 males) performed dynamic strength tests (1RM) and 3 sets of leg extensions and curls to failure (60%1RM) to determine the association between muscle typology and (total) number of repetitions. Twenty-one subjects performed additional biceps curls and triceps extensions (60%1RM) to assess influence of exercise, 23 subjects performed additional leg extensions and curls at 80% and 40%1RM to evaluate influence of training load. There was a weak but significant relationship between muscle typology and maximal isometric strength (<i>r</i> = 0.22, <i>p</i> = 0.03) favouring the fast typology individuals. Slow and fast typology individuals did not differ in upper arm and upper leg 1RM. Total number of repetitions was related to muscle typology at 80% (<i>r</i> = -0.42; <i>p</i> = 0.04) and 60% (<i>p</i> = -0.44; <i>p</i> = 0.003) but not at 40%1RM. Slow typology individuals performed more repetitions to failure at 60%1RM in the leg extension (<i>p</i> = 0.03), leg curl (<i>p</i> = 0.01) and biceps curl (<i>p</i> = 0.02). In conclusion, muscle typology has a small contribution to maximal isometric strength but not dynamic strength and partly determines the number of repetitions to failure during resistance training. This insight can help individualizing resistance training prescriptions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17461391.2023.2207077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2023.2207077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Muscle typology influences the number of repetitions to failure during resistance training.
This study examined whether muscle typology (muscle fibre type composition) is related to maximal strength and whether it can explain the high inter-individual variability in number of repetitions to failure during resistance training. Ninety-five resistance training novices (57 males) were assessed for their maximal isometric knee extension strength and muscle typology. Muscle typology was estimated by measuring carnosine in the soleus, gastrocnemius and/or vastus lateralis using proton magnetic resonance spectroscopy. Forty-four subjects (22 males) performed dynamic strength tests (1RM) and 3 sets of leg extensions and curls to failure (60%1RM) to determine the association between muscle typology and (total) number of repetitions. Twenty-one subjects performed additional biceps curls and triceps extensions (60%1RM) to assess influence of exercise, 23 subjects performed additional leg extensions and curls at 80% and 40%1RM to evaluate influence of training load. There was a weak but significant relationship between muscle typology and maximal isometric strength (r = 0.22, p = 0.03) favouring the fast typology individuals. Slow and fast typology individuals did not differ in upper arm and upper leg 1RM. Total number of repetitions was related to muscle typology at 80% (r = -0.42; p = 0.04) and 60% (p = -0.44; p = 0.003) but not at 40%1RM. Slow typology individuals performed more repetitions to failure at 60%1RM in the leg extension (p = 0.03), leg curl (p = 0.01) and biceps curl (p = 0.02). In conclusion, muscle typology has a small contribution to maximal isometric strength but not dynamic strength and partly determines the number of repetitions to failure during resistance training. This insight can help individualizing resistance training prescriptions.