前列腺癌联合靶向治疗和免疫治疗的机制和效果的新见解和选择。

IF 5.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy Oncolytics Pub Date : 2023-06-15 DOI:10.1016/j.omto.2023.04.007
Mingen Lin, Xue Sun, Lei Lv
{"title":"前列腺癌联合靶向治疗和免疫治疗的机制和效果的新见解和选择。","authors":"Mingen Lin,&nbsp;Xue Sun,&nbsp;Lei Lv","doi":"10.1016/j.omto.2023.04.007","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"29 ","pages":"91-106"},"PeriodicalIF":5.3000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/b0/main.PMC10199166.pdf","citationCount":"4","resultStr":"{\"title\":\"New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer.\",\"authors\":\"Mingen Lin,&nbsp;Xue Sun,&nbsp;Lei Lv\",\"doi\":\"10.1016/j.omto.2023.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.</p>\",\"PeriodicalId\":18869,\"journal\":{\"name\":\"Molecular Therapy Oncolytics\",\"volume\":\"29 \",\"pages\":\"91-106\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/b0/main.PMC10199166.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy Oncolytics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omto.2023.04.007\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy Oncolytics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omto.2023.04.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 4

摘要

慢性炎症被认为通过产生活性氧或活性氮来诱导DNA损伤,从而驱动前列腺癌的发生。这种影响可能随后引起表观遗传和基因组改变,导致恶性转化。虽然现有的治疗进展延长了总生存期,但晚期前列腺癌患者的肿瘤容易发生转移,转化为转移性去势抵抗性前列腺癌,并产生治疗耐药性。前列腺癌的肿瘤微环境(tumor microenvironment, TME)参与了癌变、侵袭和耐药过程。大量的临床前研究都集中在免疫疗法上。了解前列腺癌中复杂的TME系统可能有助于开发新的治疗方法,设计联合治疗策略,并进一步克服对现有治疗方法的耐药性,从而改善前列腺癌患者的生活。在这篇综述中,我们讨论了TME中的非免疫成分和各种免疫细胞及其在前列腺癌的发生、发展和转移中的可能作用。我们还概述了最新的基础研究,重点是靶向治疗的治疗进展以及前列腺癌的联合治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer.

Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy Oncolytics
Molecular Therapy Oncolytics Medicine-Oncology
CiteScore
10.90
自引率
3.50%
发文量
152
审稿时长
6 weeks
期刊介绍: Molecular Therapy — Oncolytics is an international, online-only, open access journal focusing on the development and clinical testing of viral, cellular, and other biological therapies targeting cancer.
期刊最新文献
Targeting mesothelin in cancer New advances in cancer therapy targeting TGF-β signaling pathways miR-146a: Overcoming coldness in ovarian cancer Thank you to our 2023 reviewers Gaining insights into virotherapy with canine models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1