{"title":"热激活延迟荧光小分子敏化荧光聚合物与降低浓度猝灭高效电致发光。","authors":"Qin Xue, Mingfang Huo, Guohua Xie","doi":"10.1007/s12200-022-00056-x","DOIUrl":null,"url":null,"abstract":"<p><p>Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"2"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027968/pdf/","citationCount":"2","resultStr":"{\"title\":\"Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence.\",\"authors\":\"Qin Xue, Mingfang Huo, Guohua Xie\",\"doi\":\"10.1007/s12200-022-00056-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"16 1\",\"pages\":\"2\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027968/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-022-00056-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-022-00056-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence.
Thermally activated delayed fluorescence (TADF) small molecule bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone (m-ACSO2) was used as a universal host to sensitize three conventional fluorescent polymers for maximizing the electroluminescent performance. The excitons were utilized via inter-molecular energy transfer and the non-radiative decays were successfully refrained in the condensed states. Therefore, the significant enhancement of the electroluminescent efficiencies was demonstrated. For instance, after doping poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) into m-ACSO2, the external quantum efficiency (EQE) was improved by a factor of 17.0 in the solution-processed organic light-emitting device (OLED), as compared with the device with neat F8BT. In terms of the other well-known fluorescent polymers, i.e., poly (para-phenylene vinylene) copolymer (Super Yellow, SY) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), their EQEs in the devices were respectively enhanced by 70% and 270%, compared with the reference devices based on the conventional host 1,3-di(9H-carbazol-9-yl) benzene (mCP). Besides the improved charge balance in the bipolar TADF host, these were partially ascribed to reduced fluorescence quenching in the mixed films.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more