结合发病和流行人群对疾病自然史的评估:在Nun研究中的应用。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-01 Epub Date: 2023-05-20 DOI:10.1007/s10985-023-09602-x
Daewoo Pak, Jing Ning, Richard J Kryscio, Yu Shen
{"title":"结合发病和流行人群对疾病自然史的评估:在Nun研究中的应用。","authors":"Daewoo Pak, Jing Ning, Richard J Kryscio, Yu Shen","doi":"10.1007/s10985-023-09602-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Nun study is a well-known longitudinal epidemiology study of aging and dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such a natural history of disease study, multistate modeling of the combined data from both incident and prevalent cohorts is desirable to improve the efficiency of inference. While important, the multistate modeling approaches for the combined data have been scarcely used in practice because prevalent samples do not provide the exact date of disease onset and do not represent the target population due to left-truncation. In this paper, we demonstrate how to adequately combine both incident and prevalent cohorts to examine risk factors for every possible transition in studying the natural history of dementia. We adapt a four-state nonhomogeneous Markov model to characterize all transitions between different clinical stages, including plausible reversible transitions. The estimating procedure using the combined data leads to efficiency gains for every transition compared to those from the incident cohort data only.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the natural history of disease by combining incident and prevalent cohorts: application to the Nun Study.\",\"authors\":\"Daewoo Pak, Jing Ning, Richard J Kryscio, Yu Shen\",\"doi\":\"10.1007/s10985-023-09602-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Nun study is a well-known longitudinal epidemiology study of aging and dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such a natural history of disease study, multistate modeling of the combined data from both incident and prevalent cohorts is desirable to improve the efficiency of inference. While important, the multistate modeling approaches for the combined data have been scarcely used in practice because prevalent samples do not provide the exact date of disease onset and do not represent the target population due to left-truncation. In this paper, we demonstrate how to adequately combine both incident and prevalent cohorts to examine risk factors for every possible transition in studying the natural history of dementia. We adapt a four-state nonhomogeneous Markov model to characterize all transitions between different clinical stages, including plausible reversible transitions. The estimating procedure using the combined data leads to efficiency gains for every transition compared to those from the incident cohort data only.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09602-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09602-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Nun研究是一项著名的老龄化和痴呆症纵向流行病学研究,招募了尚未被诊断为痴呆症的老年修女(即事件队列)和在进入之前患有痴呆症的年长修女(即流行队列)。在这样的疾病自然史研究中,希望对来自事件和流行队列的组合数据进行多状态建模,以提高推理效率。尽管很重要,但组合数据的多状态建模方法在实践中几乎没有使用,因为流行样本不能提供疾病发作的确切日期,并且由于左截断,不能代表目标人群。在这篇论文中,我们展示了如何充分结合事件和流行队列,以检查在研究痴呆自然史时每一个可能转变的风险因素。我们采用四态非齐次马尔可夫模型来表征不同临床阶段之间的所有转变,包括看似合理的可逆转变。与仅来自事件队列数据的估计程序相比,使用组合数据的估计过程导致每次转换的效率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the natural history of disease by combining incident and prevalent cohorts: application to the Nun Study.

The Nun study is a well-known longitudinal epidemiology study of aging and dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such a natural history of disease study, multistate modeling of the combined data from both incident and prevalent cohorts is desirable to improve the efficiency of inference. While important, the multistate modeling approaches for the combined data have been scarcely used in practice because prevalent samples do not provide the exact date of disease onset and do not represent the target population due to left-truncation. In this paper, we demonstrate how to adequately combine both incident and prevalent cohorts to examine risk factors for every possible transition in studying the natural history of dementia. We adapt a four-state nonhomogeneous Markov model to characterize all transitions between different clinical stages, including plausible reversible transitions. The estimating procedure using the combined data leads to efficiency gains for every transition compared to those from the incident cohort data only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1