Inge Schwedt, Mengyi Wang, Johannes Gibhardt, Fabian M Commichau
{"title":"环状二磷酸腺苷,单核增生李斯特菌中心代谢和渗透平衡的多方面调节因子。","authors":"Inge Schwedt, Mengyi Wang, Johannes Gibhardt, Fabian M Commichau","doi":"10.1093/femsml/uqad005","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclic di-AMP is an emerging second messenger that is synthesized by many archaea and bacteria, including the Gram-positive pathogenic bacterium <i>Listeria monocytogenes. Listeria monocytogenes</i> played a crucial role in elucidating the essential function of c-di-AMP, thereby becoming a model system for studying c-di-AMP metabolism and the influence of the nucleotide on cell physiology. c-di-AMP is synthesized by a diadenylate cyclase and degraded by two phosphodiesterases. To date, eight c-di-AMP receptor proteins have been identified in <i>L. monocytogenes</i>, including one that indirectly controls the uptake of osmotically active peptides and thus the cellular turgor. The functions of two c-di-AMP-receptor proteins still need to be elucidated. Here, we provide an overview of c-di-AMP signalling in <i>L. monocytogenes</i> and highlight the main differences compared to the other established model systems in which c-di-AMP metabolism is investigated. Moreover, we discuss the most important questions that need to be answered to fully understand the role of c-di-AMP in osmoregulation and in the control of central metabolism.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"4 ","pages":"uqad005"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/47/d0/uqad005.PMC10117814.pdf","citationCount":"2","resultStr":"{\"title\":\"Cyclic di-AMP, a multifaceted regulator of central metabolism and osmolyte homeostasis in <i>Listeria monocytogenes</i>.\",\"authors\":\"Inge Schwedt, Mengyi Wang, Johannes Gibhardt, Fabian M Commichau\",\"doi\":\"10.1093/femsml/uqad005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclic di-AMP is an emerging second messenger that is synthesized by many archaea and bacteria, including the Gram-positive pathogenic bacterium <i>Listeria monocytogenes. Listeria monocytogenes</i> played a crucial role in elucidating the essential function of c-di-AMP, thereby becoming a model system for studying c-di-AMP metabolism and the influence of the nucleotide on cell physiology. c-di-AMP is synthesized by a diadenylate cyclase and degraded by two phosphodiesterases. To date, eight c-di-AMP receptor proteins have been identified in <i>L. monocytogenes</i>, including one that indirectly controls the uptake of osmotically active peptides and thus the cellular turgor. The functions of two c-di-AMP-receptor proteins still need to be elucidated. Here, we provide an overview of c-di-AMP signalling in <i>L. monocytogenes</i> and highlight the main differences compared to the other established model systems in which c-di-AMP metabolism is investigated. Moreover, we discuss the most important questions that need to be answered to fully understand the role of c-di-AMP in osmoregulation and in the control of central metabolism.</p>\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":\"4 \",\"pages\":\"uqad005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/47/d0/uqad005.PMC10117814.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqad005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqad005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cyclic di-AMP, a multifaceted regulator of central metabolism and osmolyte homeostasis in Listeria monocytogenes.
Cyclic di-AMP is an emerging second messenger that is synthesized by many archaea and bacteria, including the Gram-positive pathogenic bacterium Listeria monocytogenes. Listeria monocytogenes played a crucial role in elucidating the essential function of c-di-AMP, thereby becoming a model system for studying c-di-AMP metabolism and the influence of the nucleotide on cell physiology. c-di-AMP is synthesized by a diadenylate cyclase and degraded by two phosphodiesterases. To date, eight c-di-AMP receptor proteins have been identified in L. monocytogenes, including one that indirectly controls the uptake of osmotically active peptides and thus the cellular turgor. The functions of two c-di-AMP-receptor proteins still need to be elucidated. Here, we provide an overview of c-di-AMP signalling in L. monocytogenes and highlight the main differences compared to the other established model systems in which c-di-AMP metabolism is investigated. Moreover, we discuss the most important questions that need to be answered to fully understand the role of c-di-AMP in osmoregulation and in the control of central metabolism.