系统开发简单人体步态指数

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL IEEE Reviews in Biomedical Engineering Pub Date : 2023-03-24 DOI:10.1109/RBME.2023.3279655
Abu Ilius Faisal;Tapas Mondal;M. Jamal Deen
{"title":"系统开发简单人体步态指数","authors":"Abu Ilius Faisal;Tapas Mondal;M. Jamal Deen","doi":"10.1109/RBME.2023.3279655","DOIUrl":null,"url":null,"abstract":"Human gait analysis aims to assess gait mechanics and to identify the deviations from “normal” gait patterns by using meaningful parameters extracted from gait data. As each parameter indicates different gait characteristics, a proper combination of key parameters is required to perform an overall gait assessment. Therefore, in this study, we introduced a simple gait index derived from the most important gait parameters (walking speed, maximum knee flexion angle, stride length, and stance-swing phase ratio) to quantify overall gait quality. We performed a systematic review to select the parameters and analyzed a gait dataset (120 healthy subjects) to develop the index and to determine the healthy range (0.50 – 0.67). To validate the parameter selection and to justify the defined index range, we applied a support vector machine algorithm to classify the dataset based on the selected parameters and achieved a high classification accuracy (∼95%). Also, we explored other published datasets that are in good agreement with the proposed index prediction, reinforcing the reliability and effectiveness of the developed gait index. The gait index can be used as a reference for preliminary assessment of human gait conditions and to quickly identify abnormal gait patterns and possible relation to health issues.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"229-242"},"PeriodicalIF":17.2000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Development of a Simple Human Gait Index\",\"authors\":\"Abu Ilius Faisal;Tapas Mondal;M. Jamal Deen\",\"doi\":\"10.1109/RBME.2023.3279655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human gait analysis aims to assess gait mechanics and to identify the deviations from “normal” gait patterns by using meaningful parameters extracted from gait data. As each parameter indicates different gait characteristics, a proper combination of key parameters is required to perform an overall gait assessment. Therefore, in this study, we introduced a simple gait index derived from the most important gait parameters (walking speed, maximum knee flexion angle, stride length, and stance-swing phase ratio) to quantify overall gait quality. We performed a systematic review to select the parameters and analyzed a gait dataset (120 healthy subjects) to develop the index and to determine the healthy range (0.50 – 0.67). To validate the parameter selection and to justify the defined index range, we applied a support vector machine algorithm to classify the dataset based on the selected parameters and achieved a high classification accuracy (∼95%). Also, we explored other published datasets that are in good agreement with the proposed index prediction, reinforcing the reliability and effectiveness of the developed gait index. The gait index can be used as a reference for preliminary assessment of human gait conditions and to quickly identify abnormal gait patterns and possible relation to health issues.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"17 \",\"pages\":\"229-242\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10132593/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10132593/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人体步态分析旨在评估步态力学,并通过使用从步态数据中提取的有意义参数来识别偏离 "正常 "步态模式的情况。由于每个参数都表示不同的步态特征,因此需要适当组合关键参数才能进行整体步态评估。因此,在本研究中,我们从最重要的步态参数(行走速度、膝关节最大屈曲角度、步长和步幅-摆动相位比)中提取了一个简单的步态指数,用于量化整体步态质量。我们对参数的选择进行了系统回顾,并对步态数据集(120 名健康受试者)进行了分析,以制定该指数并确定健康范围(0.50 - 0.67)。为了验证参数的选择并证明所定义的指数范围,我们根据所选参数应用支持向量机算法对数据集进行了分类,并取得了较高的分类准确率(∼95%)。此外,我们还探索了其他已发表的数据集,这些数据集与所提出的指数预测结果非常吻合,从而加强了所开发步态指数的可靠性和有效性。步态指数可作为初步评估人体步态状况的参考,并能快速识别异常步态模式及可能与健康问题的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Development of a Simple Human Gait Index
Human gait analysis aims to assess gait mechanics and to identify the deviations from “normal” gait patterns by using meaningful parameters extracted from gait data. As each parameter indicates different gait characteristics, a proper combination of key parameters is required to perform an overall gait assessment. Therefore, in this study, we introduced a simple gait index derived from the most important gait parameters (walking speed, maximum knee flexion angle, stride length, and stance-swing phase ratio) to quantify overall gait quality. We performed a systematic review to select the parameters and analyzed a gait dataset (120 healthy subjects) to develop the index and to determine the healthy range (0.50 – 0.67). To validate the parameter selection and to justify the defined index range, we applied a support vector machine algorithm to classify the dataset based on the selected parameters and achieved a high classification accuracy (∼95%). Also, we explored other published datasets that are in good agreement with the proposed index prediction, reinforcing the reliability and effectiveness of the developed gait index. The gait index can be used as a reference for preliminary assessment of human gait conditions and to quickly identify abnormal gait patterns and possible relation to health issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
期刊最新文献
Foundation Model for Advancing Healthcare: Challenges, Opportunities and Future Directions. A Manual for Genome and Transcriptome Engineering. Artificial General Intelligence for Medical Imaging Analysis. A Survey of Few-Shot Learning for Biomedical Time Series. The Physiome Project and Digital Twins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1