Prasenjit Mahato, Sanat Kumar Mahato, Subhashis Das, Partha Karmakar
{"title":"随机环境下具有饱和发病率和疫苗接种的SVIS流行模型的平稳分布和密度函数分析。","authors":"Prasenjit Mahato, Sanat Kumar Mahato, Subhashis Das, Partha Karmakar","doi":"10.1007/s12064-023-00392-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we study the dynamical properties of susceptible-vaccinated-infected-susceptible (SVIS) epidemic system with saturated incidence rate and vaccination strategies. By constructing the suitable Lyapunov function, we examine the existence and uniqueness of the stochastic system. With the help of Khas'minskii theory, we set up a critical value [Formula: see text] with respect to the basic reproduction number [Formula: see text] of the deterministic system. A unique ergodic stationary distribution is investigated under the condition of [Formula: see text]. In the epidemiological study, the ergodic stationary distribution represents that the disease will persist for long-term behavior. We focus for developing the general three-dimensional Fokker-Planck equation using appropriate solving theories. Around the quasi-endemic equilibrium, the probability density function of the stochastic system is analyzed which is the main theme of our study. Under [Formula: see text], both the existence of ergodic stationary distribution and density function can elicit all the dynamical behavior of the disease persistence. The condition of disease extinction of the system is derived. For supporting theoretical study, we discuss the numerical results and the sensitivities of the biological parameters. Results and conclusions are highlighted.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stationary distribution and density function analysis of SVIS epidemic model with saturated incidence and vaccination under stochastic environments.\",\"authors\":\"Prasenjit Mahato, Sanat Kumar Mahato, Subhashis Das, Partha Karmakar\",\"doi\":\"10.1007/s12064-023-00392-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we study the dynamical properties of susceptible-vaccinated-infected-susceptible (SVIS) epidemic system with saturated incidence rate and vaccination strategies. By constructing the suitable Lyapunov function, we examine the existence and uniqueness of the stochastic system. With the help of Khas'minskii theory, we set up a critical value [Formula: see text] with respect to the basic reproduction number [Formula: see text] of the deterministic system. A unique ergodic stationary distribution is investigated under the condition of [Formula: see text]. In the epidemiological study, the ergodic stationary distribution represents that the disease will persist for long-term behavior. We focus for developing the general three-dimensional Fokker-Planck equation using appropriate solving theories. Around the quasi-endemic equilibrium, the probability density function of the stochastic system is analyzed which is the main theme of our study. Under [Formula: see text], both the existence of ergodic stationary distribution and density function can elicit all the dynamical behavior of the disease persistence. The condition of disease extinction of the system is derived. For supporting theoretical study, we discuss the numerical results and the sensitivities of the biological parameters. Results and conclusions are highlighted.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-023-00392-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-023-00392-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stationary distribution and density function analysis of SVIS epidemic model with saturated incidence and vaccination under stochastic environments.
In this article, we study the dynamical properties of susceptible-vaccinated-infected-susceptible (SVIS) epidemic system with saturated incidence rate and vaccination strategies. By constructing the suitable Lyapunov function, we examine the existence and uniqueness of the stochastic system. With the help of Khas'minskii theory, we set up a critical value [Formula: see text] with respect to the basic reproduction number [Formula: see text] of the deterministic system. A unique ergodic stationary distribution is investigated under the condition of [Formula: see text]. In the epidemiological study, the ergodic stationary distribution represents that the disease will persist for long-term behavior. We focus for developing the general three-dimensional Fokker-Planck equation using appropriate solving theories. Around the quasi-endemic equilibrium, the probability density function of the stochastic system is analyzed which is the main theme of our study. Under [Formula: see text], both the existence of ergodic stationary distribution and density function can elicit all the dynamical behavior of the disease persistence. The condition of disease extinction of the system is derived. For supporting theoretical study, we discuss the numerical results and the sensitivities of the biological parameters. Results and conclusions are highlighted.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.