传感器放置对跑步时胫骨远端加速度测量的影响。

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Applied Biomechanics Pub Date : 2023-06-01 DOI:10.1123/jab.2022-0249
Lauren K Sara, Jereme Outerleys, Caleb D Johnson
{"title":"传感器放置对跑步时胫骨远端加速度测量的影响。","authors":"Lauren K Sara,&nbsp;Jereme Outerleys,&nbsp;Caleb D Johnson","doi":"10.1123/jab.2022-0249","DOIUrl":null,"url":null,"abstract":"<p><p>Inertial measurement units (IMUs) attached to the distal tibia are a validated method of measuring lower-extremity impact accelerations, called tibial accelerations (TAs), in runners. However, no studies have investigated the effects of small errors in IMU placement, which would be expected in real-world, autonomous use of IMUs. The purpose of this study was to evaluate the effect of a small proximal shift in IMU location on mean TAs and relationships between TAs and ground reaction force loading rates. IMUs were strapped to 18 injury-free runners at a specified standard location (∼1 cm proximal to medial malleolus) and 2 cm proximal to the standard location. TAs and ground reaction forces were measured while participants ran at self-selected and 10% slower/faster speeds. Mean TA was lower at the standard versus proximal IMU location in the faster running condition (P = .026), but similar in the slower (P = .643) and self-selected conditions (P = .654). Mean TAs measured at the standard IMU explained more variation in ground reaction force loading rates (r2 = .79-.90; P < .001) compared with those measured at the proximal IMU (r2 = .65-.72; P < .001). These results suggest that careful attention should be given to IMU placement when measuring TAs during running.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 3","pages":"199-203"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Sensor Placement on Measured Distal Tibial Accelerations During Running.\",\"authors\":\"Lauren K Sara,&nbsp;Jereme Outerleys,&nbsp;Caleb D Johnson\",\"doi\":\"10.1123/jab.2022-0249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inertial measurement units (IMUs) attached to the distal tibia are a validated method of measuring lower-extremity impact accelerations, called tibial accelerations (TAs), in runners. However, no studies have investigated the effects of small errors in IMU placement, which would be expected in real-world, autonomous use of IMUs. The purpose of this study was to evaluate the effect of a small proximal shift in IMU location on mean TAs and relationships between TAs and ground reaction force loading rates. IMUs were strapped to 18 injury-free runners at a specified standard location (∼1 cm proximal to medial malleolus) and 2 cm proximal to the standard location. TAs and ground reaction forces were measured while participants ran at self-selected and 10% slower/faster speeds. Mean TA was lower at the standard versus proximal IMU location in the faster running condition (P = .026), but similar in the slower (P = .643) and self-selected conditions (P = .654). Mean TAs measured at the standard IMU explained more variation in ground reaction force loading rates (r2 = .79-.90; P < .001) compared with those measured at the proximal IMU (r2 = .65-.72; P < .001). These results suggest that careful attention should be given to IMU placement when measuring TAs during running.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\"39 3\",\"pages\":\"199-203\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2022-0249\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

附着在胫骨远端的惯性测量单元(imu)是一种经过验证的测量跑步者下肢冲击加速度的方法,称为胫骨加速度(TAs)。然而,没有研究调查IMU放置的小误差的影响,这在现实世界中是可以预期的,自主使用IMU。本研究的目的是评估IMU位置近端小位移对平均TAs的影响,以及TAs与地面反力加载率之间的关系。在指定的标准位置(内踝近1 cm)和标准位置近2 cm处,将imu绑在18名无损伤的跑步者身上。当参与者以自己选择的速度和慢/快10%的速度跑步时,测量ta和地面反作用力。在快速运行条件下,标准位置的平均TA低于IMU近端位置(P = 0.026),但在较慢运行条件下(P = 0.643)和自选条件下(P = 0.654)相似。在标准IMU上测量的平均TAs解释了地面反作用力加载率的更多变化(r2 = 0.79 - 0.90;P < 0.001)与近端IMU测量值相比(r2 = 0.65 - 0.72;P < 0.001)。这些结果表明,在跑步过程中测量ta时,应仔细注意IMU的放置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Sensor Placement on Measured Distal Tibial Accelerations During Running.

Inertial measurement units (IMUs) attached to the distal tibia are a validated method of measuring lower-extremity impact accelerations, called tibial accelerations (TAs), in runners. However, no studies have investigated the effects of small errors in IMU placement, which would be expected in real-world, autonomous use of IMUs. The purpose of this study was to evaluate the effect of a small proximal shift in IMU location on mean TAs and relationships between TAs and ground reaction force loading rates. IMUs were strapped to 18 injury-free runners at a specified standard location (∼1 cm proximal to medial malleolus) and 2 cm proximal to the standard location. TAs and ground reaction forces were measured while participants ran at self-selected and 10% slower/faster speeds. Mean TA was lower at the standard versus proximal IMU location in the faster running condition (P = .026), but similar in the slower (P = .643) and self-selected conditions (P = .654). Mean TAs measured at the standard IMU explained more variation in ground reaction force loading rates (r2 = .79-.90; P < .001) compared with those measured at the proximal IMU (r2 = .65-.72; P < .001). These results suggest that careful attention should be given to IMU placement when measuring TAs during running.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
期刊最新文献
Role of Hip Internal Rotation Range and Foot Progression Angle for Preventing Jones Fracture During Crossover Cutting. The Effect of Step Frequency and Running Speed on the Coordination of the Pelvis and Thigh Segments During Running. Effects of Different Inertial Measurement Unit Sensor-to-Segment Calibrations on Clinical 3-Dimensional Humerothoracic Joint Angles Estimation. Enhancing Sprint Performance and Biomechanics in Semiprofessional Football Players Through Repeated-Sprint Training. Investigation of a Theoretical Model for the Rotational Shot Put Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1