{"title":"虚拟现实、增强现实和混合现实:儿科的潜在临床和培训应用。","authors":"Suyoung Yoo, Meong Hi Son","doi":"10.3345/cep.2022.00731","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>COVID-19 pandemic has significantly impacted the field of medical training, necessitating innovative approaches to education and practice. During this period, the use of novel technologies like virtual reality (VR), augmented reality (AR), and mixed reality (MR) has become increasingly vital. These technologies offer the advantage of transcending the limitations of time and space, thus enabling medical professionals to access various personalized programs for both education and service delivery. This shift is particularly relevant in the realm of pediatric medicine, where traditional training and clinical methods face unique challenges.</p><p><strong>Purpose: </strong>The primary aim of this study is to explore the application of VR, AR, and MR technologies in pediatric medical settings, with a focus on both clinical applications and the training of pediatric medical professionals. We aim to comprehensively search and review studies that have utilized these technologies in the treatment of pediatric patients and the education of healthcare providers in this field.</p><p><strong>Methods: </strong>Peer-reviewed articles published in PubMed, the Cochrane Library, ScienceDirect, Google Scholar, and Scopus from January 1, 2018, to March 1, 2023, were comprehensively searched. The review was conducted according to the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analyses) guidelines. Among the 89 studies, 63 investigated the clinical applications of VR (n=60) or AR (n=3) in pediatric patients, and 25 investigated the applications of VR (n=19), AR (n=5), or MR (n=1) for training medical professionals.</p><p><strong>Results: </strong>A total of 36 randomized controlled trials (RCTs) for clinical application (n=31) and medical training (n=5) were retrieved. Among the RCTs, 21 reported significant improvements in clinical applications (n=17) and medical training (n=4).</p><p><strong>Conclusion: </strong>Despite a few limitations in conducting research on innovative technology, such research has rapidly expanded, indicating that an increasing number of researchers are involved in pediatric research using these technologies.</p>","PeriodicalId":36018,"journal":{"name":"Clinical and Experimental Pediatrics","volume":" ","pages":"92-103"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Virtual, augmented, and mixed reality: potential clinical and training applications in pediatrics.\",\"authors\":\"Suyoung Yoo, Meong Hi Son\",\"doi\":\"10.3345/cep.2022.00731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>COVID-19 pandemic has significantly impacted the field of medical training, necessitating innovative approaches to education and practice. During this period, the use of novel technologies like virtual reality (VR), augmented reality (AR), and mixed reality (MR) has become increasingly vital. These technologies offer the advantage of transcending the limitations of time and space, thus enabling medical professionals to access various personalized programs for both education and service delivery. This shift is particularly relevant in the realm of pediatric medicine, where traditional training and clinical methods face unique challenges.</p><p><strong>Purpose: </strong>The primary aim of this study is to explore the application of VR, AR, and MR technologies in pediatric medical settings, with a focus on both clinical applications and the training of pediatric medical professionals. We aim to comprehensively search and review studies that have utilized these technologies in the treatment of pediatric patients and the education of healthcare providers in this field.</p><p><strong>Methods: </strong>Peer-reviewed articles published in PubMed, the Cochrane Library, ScienceDirect, Google Scholar, and Scopus from January 1, 2018, to March 1, 2023, were comprehensively searched. The review was conducted according to the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analyses) guidelines. Among the 89 studies, 63 investigated the clinical applications of VR (n=60) or AR (n=3) in pediatric patients, and 25 investigated the applications of VR (n=19), AR (n=5), or MR (n=1) for training medical professionals.</p><p><strong>Results: </strong>A total of 36 randomized controlled trials (RCTs) for clinical application (n=31) and medical training (n=5) were retrieved. Among the RCTs, 21 reported significant improvements in clinical applications (n=17) and medical training (n=4).</p><p><strong>Conclusion: </strong>Despite a few limitations in conducting research on innovative technology, such research has rapidly expanded, indicating that an increasing number of researchers are involved in pediatric research using these technologies.</p>\",\"PeriodicalId\":36018,\"journal\":{\"name\":\"Clinical and Experimental Pediatrics\",\"volume\":\" \",\"pages\":\"92-103\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pediatrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3345/cep.2022.00731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3345/cep.2022.00731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
Virtual, augmented, and mixed reality: potential clinical and training applications in pediatrics.
Background: COVID-19 pandemic has significantly impacted the field of medical training, necessitating innovative approaches to education and practice. During this period, the use of novel technologies like virtual reality (VR), augmented reality (AR), and mixed reality (MR) has become increasingly vital. These technologies offer the advantage of transcending the limitations of time and space, thus enabling medical professionals to access various personalized programs for both education and service delivery. This shift is particularly relevant in the realm of pediatric medicine, where traditional training and clinical methods face unique challenges.
Purpose: The primary aim of this study is to explore the application of VR, AR, and MR technologies in pediatric medical settings, with a focus on both clinical applications and the training of pediatric medical professionals. We aim to comprehensively search and review studies that have utilized these technologies in the treatment of pediatric patients and the education of healthcare providers in this field.
Methods: Peer-reviewed articles published in PubMed, the Cochrane Library, ScienceDirect, Google Scholar, and Scopus from January 1, 2018, to March 1, 2023, were comprehensively searched. The review was conducted according to the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analyses) guidelines. Among the 89 studies, 63 investigated the clinical applications of VR (n=60) or AR (n=3) in pediatric patients, and 25 investigated the applications of VR (n=19), AR (n=5), or MR (n=1) for training medical professionals.
Results: A total of 36 randomized controlled trials (RCTs) for clinical application (n=31) and medical training (n=5) were retrieved. Among the RCTs, 21 reported significant improvements in clinical applications (n=17) and medical training (n=4).
Conclusion: Despite a few limitations in conducting research on innovative technology, such research has rapidly expanded, indicating that an increasing number of researchers are involved in pediatric research using these technologies.