Harold I Salmons, Christopher Gow, Afton K Limberg, Jacob W Bettencourt, Mason F Carstens, Ashley N Payne, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel
{"title":"脂肪素受体激动剂 AdipoRon 在兔关节纤维化模型中的安全性","authors":"Harold I Salmons, Christopher Gow, Afton K Limberg, Jacob W Bettencourt, Mason F Carstens, Ashley N Payne, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel","doi":"10.1089/ten.TEC.2023.0008","DOIUrl":null,"url":null,"abstract":"<p><p>AdipoRon is an adiponectin receptor 1, 2 (ADIPOR1 and ADIPOR2) agonist with numerous reported physiological benefits in murine models of human disease, including a proposed reduction in fibrosis. However, AdipoRon has never been investigated in rabbits, which provide a robust model for orthopedic conditions. We examined the safety of intravenous (IV) AdipoRon in New Zealand White (NZW) female rabbits surgically stressed by a procedure that mimics human arthrofibrosis. Fifteen female NZW rabbits were prospectively studied using increasing AdipoRon doses based on established literature. AdipoRon was dissolved in dimethyl sulfoxide (DMSO), diluted in normal saline, and administered IV preoperatively and for 5 subsequent days postoperatively. The primary outcome was overall toxicity to rabbits, whereas secondary outcomes were change in rabbit weights and hemodynamics and defining acid-base characteristics of the drug formulation. Two rabbits expired during preoperative drug administration at 25 mg/kg. Remaining rabbits received preoperative doses of DMSO (vehicle), 2.5, 5, or 10 mg/kg of AdipoRon without complications. On postoperative day 1, one rabbit sustained a tonic-clonic seizure after their second dose of 10 mg/kg AdipoRon. The remaining 12 rabbits (4 in each group) received six serial doses of vehicle, 2.5, or 5 mg/kg of AdipoRon without adverse effects. All formulations of AdipoRon were within safe physiological pH ranges (4-5). We are the first to report the use of IV AdipoRon in a surgically stressed rabbit model of orthopedic disease. AdipoRon doses of 5 mg/kg or less appear to be well-tolerated in female NZW rabbits. Impact statement We provided the first <i>in vivo</i> toxicity assessment and dose optimization of a new antifibrotic experimental medication, AdipoRon, in a surgically stressed rabbit model of knee arthrofibrosis.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 4","pages":"154-159"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122264/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Safety of Adiponectin Receptor Agonist AdipoRon in a Rabbit Model of Arthrofibrosis.\",\"authors\":\"Harold I Salmons, Christopher Gow, Afton K Limberg, Jacob W Bettencourt, Mason F Carstens, Ashley N Payne, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel\",\"doi\":\"10.1089/ten.TEC.2023.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AdipoRon is an adiponectin receptor 1, 2 (ADIPOR1 and ADIPOR2) agonist with numerous reported physiological benefits in murine models of human disease, including a proposed reduction in fibrosis. However, AdipoRon has never been investigated in rabbits, which provide a robust model for orthopedic conditions. We examined the safety of intravenous (IV) AdipoRon in New Zealand White (NZW) female rabbits surgically stressed by a procedure that mimics human arthrofibrosis. Fifteen female NZW rabbits were prospectively studied using increasing AdipoRon doses based on established literature. AdipoRon was dissolved in dimethyl sulfoxide (DMSO), diluted in normal saline, and administered IV preoperatively and for 5 subsequent days postoperatively. The primary outcome was overall toxicity to rabbits, whereas secondary outcomes were change in rabbit weights and hemodynamics and defining acid-base characteristics of the drug formulation. Two rabbits expired during preoperative drug administration at 25 mg/kg. Remaining rabbits received preoperative doses of DMSO (vehicle), 2.5, 5, or 10 mg/kg of AdipoRon without complications. On postoperative day 1, one rabbit sustained a tonic-clonic seizure after their second dose of 10 mg/kg AdipoRon. The remaining 12 rabbits (4 in each group) received six serial doses of vehicle, 2.5, or 5 mg/kg of AdipoRon without adverse effects. All formulations of AdipoRon were within safe physiological pH ranges (4-5). We are the first to report the use of IV AdipoRon in a surgically stressed rabbit model of orthopedic disease. AdipoRon doses of 5 mg/kg or less appear to be well-tolerated in female NZW rabbits. Impact statement We provided the first <i>in vivo</i> toxicity assessment and dose optimization of a new antifibrotic experimental medication, AdipoRon, in a surgically stressed rabbit model of knee arthrofibrosis.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\"29 4\",\"pages\":\"154-159\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2023.0008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2023.0008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
The Safety of Adiponectin Receptor Agonist AdipoRon in a Rabbit Model of Arthrofibrosis.
AdipoRon is an adiponectin receptor 1, 2 (ADIPOR1 and ADIPOR2) agonist with numerous reported physiological benefits in murine models of human disease, including a proposed reduction in fibrosis. However, AdipoRon has never been investigated in rabbits, which provide a robust model for orthopedic conditions. We examined the safety of intravenous (IV) AdipoRon in New Zealand White (NZW) female rabbits surgically stressed by a procedure that mimics human arthrofibrosis. Fifteen female NZW rabbits were prospectively studied using increasing AdipoRon doses based on established literature. AdipoRon was dissolved in dimethyl sulfoxide (DMSO), diluted in normal saline, and administered IV preoperatively and for 5 subsequent days postoperatively. The primary outcome was overall toxicity to rabbits, whereas secondary outcomes were change in rabbit weights and hemodynamics and defining acid-base characteristics of the drug formulation. Two rabbits expired during preoperative drug administration at 25 mg/kg. Remaining rabbits received preoperative doses of DMSO (vehicle), 2.5, 5, or 10 mg/kg of AdipoRon without complications. On postoperative day 1, one rabbit sustained a tonic-clonic seizure after their second dose of 10 mg/kg AdipoRon. The remaining 12 rabbits (4 in each group) received six serial doses of vehicle, 2.5, or 5 mg/kg of AdipoRon without adverse effects. All formulations of AdipoRon were within safe physiological pH ranges (4-5). We are the first to report the use of IV AdipoRon in a surgically stressed rabbit model of orthopedic disease. AdipoRon doses of 5 mg/kg or less appear to be well-tolerated in female NZW rabbits. Impact statement We provided the first in vivo toxicity assessment and dose optimization of a new antifibrotic experimental medication, AdipoRon, in a surgically stressed rabbit model of knee arthrofibrosis.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.