Liang Dai , Yu Zhao , Lei Zhang , Dong Chen , Rongrong Wu
{"title":"中国特大城市颗粒数、粒径分布及不同新颗粒形成类型的形成和增长率","authors":"Liang Dai , Yu Zhao , Lei Zhang , Dong Chen , Rongrong Wu","doi":"10.1016/j.jes.2022.07.029","DOIUrl":null,"url":null,"abstract":"<div><p><span>To understand the contribution of new particle formation (NPF) events to ambient fine particle pollution, measurements of particle size distributions<span>, trace gases and meteorological conditions, were conducted at a suburban site (NJU) from October to December 2016 and at an industrial site (NUIST) from September to November 2015 in Nanjing. According to the temporal evolution of the particle size distributions, three types NPF events were observed: typical NPF (Type A), moderate NPF events (Type B) and strong NPF (Type C) events. The favorable conditions for Type A events included low relative humidity, low concentration of pre-existing particles, and high solar radiation. The favorable conditions of Type B events were similar to Type A, except for a higher concentration of pre-existing particles. Type C events were more likely to happen with the higher relative humidity, lower solar radiation and continuous growth of pre-existing particle concentration. The formation rate of 3 nm (</span></span><em>J</em><sub>3</sub>) was the lowest for Type A events and highest for Type C events. In contrast, the growth rates of 10 nm and 40 nm particles were the highest for Type A, and lowest for Type C. Results show that NPF events with only higher <em>J</em><sub>3</sub><span> would lead to the accumulation of nucleation mode particles. Sulfuric acid was important for the formation of particles but had little effect on the growth of particle size.</span></p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"131 ","pages":"Pages 11-25"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle number size distributions and formation and growth rates of different new particle formation types of a megacity in China\",\"authors\":\"Liang Dai , Yu Zhao , Lei Zhang , Dong Chen , Rongrong Wu\",\"doi\":\"10.1016/j.jes.2022.07.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>To understand the contribution of new particle formation (NPF) events to ambient fine particle pollution, measurements of particle size distributions<span>, trace gases and meteorological conditions, were conducted at a suburban site (NJU) from October to December 2016 and at an industrial site (NUIST) from September to November 2015 in Nanjing. According to the temporal evolution of the particle size distributions, three types NPF events were observed: typical NPF (Type A), moderate NPF events (Type B) and strong NPF (Type C) events. The favorable conditions for Type A events included low relative humidity, low concentration of pre-existing particles, and high solar radiation. The favorable conditions of Type B events were similar to Type A, except for a higher concentration of pre-existing particles. Type C events were more likely to happen with the higher relative humidity, lower solar radiation and continuous growth of pre-existing particle concentration. The formation rate of 3 nm (</span></span><em>J</em><sub>3</sub>) was the lowest for Type A events and highest for Type C events. In contrast, the growth rates of 10 nm and 40 nm particles were the highest for Type A, and lowest for Type C. Results show that NPF events with only higher <em>J</em><sub>3</sub><span> would lead to the accumulation of nucleation mode particles. Sulfuric acid was important for the formation of particles but had little effect on the growth of particle size.</span></p></div>\",\"PeriodicalId\":15774,\"journal\":{\"name\":\"Journal of environmental sciences\",\"volume\":\"131 \",\"pages\":\"Pages 11-25\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental sciences\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074222003825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074222003825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Particle number size distributions and formation and growth rates of different new particle formation types of a megacity in China
To understand the contribution of new particle formation (NPF) events to ambient fine particle pollution, measurements of particle size distributions, trace gases and meteorological conditions, were conducted at a suburban site (NJU) from October to December 2016 and at an industrial site (NUIST) from September to November 2015 in Nanjing. According to the temporal evolution of the particle size distributions, three types NPF events were observed: typical NPF (Type A), moderate NPF events (Type B) and strong NPF (Type C) events. The favorable conditions for Type A events included low relative humidity, low concentration of pre-existing particles, and high solar radiation. The favorable conditions of Type B events were similar to Type A, except for a higher concentration of pre-existing particles. Type C events were more likely to happen with the higher relative humidity, lower solar radiation and continuous growth of pre-existing particle concentration. The formation rate of 3 nm (J3) was the lowest for Type A events and highest for Type C events. In contrast, the growth rates of 10 nm and 40 nm particles were the highest for Type A, and lowest for Type C. Results show that NPF events with only higher J3 would lead to the accumulation of nucleation mode particles. Sulfuric acid was important for the formation of particles but had little effect on the growth of particle size.
期刊介绍:
Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.