{"title":"混合-混合多项逻辑模型用于识别乘客安全带使用的因素。","authors":"Mahdi Rezapour, Khaled Ksaibati","doi":"10.1080/17457300.2022.2164308","DOIUrl":null,"url":null,"abstract":"<p><p>A better understanding of the underlying factors to the choice of seatbelt use could contribute to the policy solutions, which consequently enhance the rate of seatbelt usage. To achieve that goal, it is important to obtain unbiased and reliable results by employing a valid statistical technique. In this paper, the latent class (LC) model was extended to account for unobserved heterogeneity across parameters within the same class. The random parameter latent class, or mixed-mixed (MM) model, is an extension of the mixed and LC models by adding another layer to the LC model, with an objective of accounting for heterogeneity within a same class. The results indicated that although the LC model outperformed the mixed model, the standard LC model did not account for the whole heterogeneity in the dataset and adding an extra layer for changing the parameter across the observations result in an improvement in a model fit. The results indicated that seatbelt status of the driver, vehicle type, day of a week, and driver gender are some of factors impacting whether or not passengers would wear their seatbelts. It was also observed that accounting for day of a week, drivers' gender, and type of vehicle heterogeneities in the second layer of the MM model result in a better fit, compared with the LC technique. The results of this study expand our understanding about factors to the choice of seatbelt use while capturing extra heterogeneity of the front-seat passengers' choice of seatbelt use. This is one of the earliest studies implemented the technique in the context of the traffic safety, with individual-specific observations.</p>","PeriodicalId":47014,"journal":{"name":"International Journal of Injury Control and Safety Promotion","volume":"30 2","pages":"262-269"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mixed-mixed multinomial logit model for identification of factors to the passengers' seatbelt use.\",\"authors\":\"Mahdi Rezapour, Khaled Ksaibati\",\"doi\":\"10.1080/17457300.2022.2164308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A better understanding of the underlying factors to the choice of seatbelt use could contribute to the policy solutions, which consequently enhance the rate of seatbelt usage. To achieve that goal, it is important to obtain unbiased and reliable results by employing a valid statistical technique. In this paper, the latent class (LC) model was extended to account for unobserved heterogeneity across parameters within the same class. The random parameter latent class, or mixed-mixed (MM) model, is an extension of the mixed and LC models by adding another layer to the LC model, with an objective of accounting for heterogeneity within a same class. The results indicated that although the LC model outperformed the mixed model, the standard LC model did not account for the whole heterogeneity in the dataset and adding an extra layer for changing the parameter across the observations result in an improvement in a model fit. The results indicated that seatbelt status of the driver, vehicle type, day of a week, and driver gender are some of factors impacting whether or not passengers would wear their seatbelts. It was also observed that accounting for day of a week, drivers' gender, and type of vehicle heterogeneities in the second layer of the MM model result in a better fit, compared with the LC technique. The results of this study expand our understanding about factors to the choice of seatbelt use while capturing extra heterogeneity of the front-seat passengers' choice of seatbelt use. This is one of the earliest studies implemented the technique in the context of the traffic safety, with individual-specific observations.</p>\",\"PeriodicalId\":47014,\"journal\":{\"name\":\"International Journal of Injury Control and Safety Promotion\",\"volume\":\"30 2\",\"pages\":\"262-269\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Injury Control and Safety Promotion\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17457300.2022.2164308\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Injury Control and Safety Promotion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17457300.2022.2164308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
The mixed-mixed multinomial logit model for identification of factors to the passengers' seatbelt use.
A better understanding of the underlying factors to the choice of seatbelt use could contribute to the policy solutions, which consequently enhance the rate of seatbelt usage. To achieve that goal, it is important to obtain unbiased and reliable results by employing a valid statistical technique. In this paper, the latent class (LC) model was extended to account for unobserved heterogeneity across parameters within the same class. The random parameter latent class, or mixed-mixed (MM) model, is an extension of the mixed and LC models by adding another layer to the LC model, with an objective of accounting for heterogeneity within a same class. The results indicated that although the LC model outperformed the mixed model, the standard LC model did not account for the whole heterogeneity in the dataset and adding an extra layer for changing the parameter across the observations result in an improvement in a model fit. The results indicated that seatbelt status of the driver, vehicle type, day of a week, and driver gender are some of factors impacting whether or not passengers would wear their seatbelts. It was also observed that accounting for day of a week, drivers' gender, and type of vehicle heterogeneities in the second layer of the MM model result in a better fit, compared with the LC technique. The results of this study expand our understanding about factors to the choice of seatbelt use while capturing extra heterogeneity of the front-seat passengers' choice of seatbelt use. This is one of the earliest studies implemented the technique in the context of the traffic safety, with individual-specific observations.
期刊介绍:
International Journal of Injury Control and Safety Promotion (formerly Injury Control and Safety Promotion) publishes articles concerning all phases of injury control, including prevention, acute care and rehabilitation. Specifically, this journal will publish articles that for each type of injury: •describe the problem •analyse the causes and risk factors •discuss the design and evaluation of solutions •describe the implementation of effective programs and policies The journal encompasses all causes of fatal and non-fatal injury, including injuries related to: •transport •school and work •home and leisure activities •sport •violence and assault