HIF1α/CCL7/KIAA1199轴介导缺氧诱导的胃癌加重和糖酵解改变。

IF 2 4区 医学 Q3 NUTRITION & DIETETICS Journal of Clinical Biochemistry and Nutrition Pub Date : 2023-05-01 DOI:10.3164/jcbn.22-48
Chen Mi, Yan Zhao, Li Ren, Dan Zhang
{"title":"HIF1α/CCL7/KIAA1199轴介导缺氧诱导的胃癌加重和糖酵解改变。","authors":"Chen Mi,&nbsp;Yan Zhao,&nbsp;Li Ren,&nbsp;Dan Zhang","doi":"10.3164/jcbn.22-48","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer is a common digestion tumor with high malignant severity and prevalence. Emerging studies reported C-C motif chemokine ligand 7 (CCL7) as a regulator of various tumor diseases. Our research explored the function and underlying mechanism of CCL7 during gastric cancer development. RT-qPCR, Western blot and other datasets were employed to evaluate CCL7 expression in tissues and cells. Kaplan-Meier and Cox regression analyses were recruited to evaluate the correlations between CCL7 expression and patients' survival or clinical features. A loss-of-function assay was performed to evaluate the function of CCL7 in gastric cancer. 1% O<sub>2</sub> was utilized to mimic hypoxic condition. KIAA1199 and HIF1α were included in the regulatory mechanism. The results showed that CCL7 was up-regulated and its high expression was correlated with poor survival of gastric cancer patients. Depressing CCL7 attenuated proliferation, migration, invasion, and induced apoptosis of gastric cancer cells. Meanwhile, CCL7 inhibition weakened hypoxia-induced gastric cancer aggravation. Besides, KIAA1199 and HIF1α were involved in the mechanism of CCL7-mediated gastric cancer aggravation under hypoxia. Our research identified CCL7 as a novel tumor-activator in gastric cancer pathogenesis and hypoxia-induced tumor aggravation was regulated by HIF1α/CCL7/KIAA1199 axis. The evidence may provide a novel target for gastric cancer treatment.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"72 3","pages":"225-233"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/50/e9/jcbn22-48.PMC10209595.pdf","citationCount":"0","resultStr":"{\"title\":\"HIF1α/CCL7/KIAA1199 axis mediates hypoxia-induced gastric cancer aggravation and glycolysis alteration.\",\"authors\":\"Chen Mi,&nbsp;Yan Zhao,&nbsp;Li Ren,&nbsp;Dan Zhang\",\"doi\":\"10.3164/jcbn.22-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer is a common digestion tumor with high malignant severity and prevalence. Emerging studies reported C-C motif chemokine ligand 7 (CCL7) as a regulator of various tumor diseases. Our research explored the function and underlying mechanism of CCL7 during gastric cancer development. RT-qPCR, Western blot and other datasets were employed to evaluate CCL7 expression in tissues and cells. Kaplan-Meier and Cox regression analyses were recruited to evaluate the correlations between CCL7 expression and patients' survival or clinical features. A loss-of-function assay was performed to evaluate the function of CCL7 in gastric cancer. 1% O<sub>2</sub> was utilized to mimic hypoxic condition. KIAA1199 and HIF1α were included in the regulatory mechanism. The results showed that CCL7 was up-regulated and its high expression was correlated with poor survival of gastric cancer patients. Depressing CCL7 attenuated proliferation, migration, invasion, and induced apoptosis of gastric cancer cells. Meanwhile, CCL7 inhibition weakened hypoxia-induced gastric cancer aggravation. Besides, KIAA1199 and HIF1α were involved in the mechanism of CCL7-mediated gastric cancer aggravation under hypoxia. Our research identified CCL7 as a novel tumor-activator in gastric cancer pathogenesis and hypoxia-induced tumor aggravation was regulated by HIF1α/CCL7/KIAA1199 axis. The evidence may provide a novel target for gastric cancer treatment.</p>\",\"PeriodicalId\":15429,\"journal\":{\"name\":\"Journal of Clinical Biochemistry and Nutrition\",\"volume\":\"72 3\",\"pages\":\"225-233\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/50/e9/jcbn22-48.PMC10209595.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Biochemistry and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3164/jcbn.22-48\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.22-48","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

胃癌是一种常见的消化系统肿瘤,恶性程度高,发病率高。新研究报道了C-C基序趋化因子配体7 (CCL7)作为多种肿瘤疾病的调节因子。我们的研究探讨了CCL7在胃癌发生发展中的作用及其机制。采用RT-qPCR、Western blot等数据检测CCL7在组织和细胞中的表达。采用Kaplan-Meier和Cox回归分析评估CCL7表达与患者生存或临床特征的相关性。通过功能丧失测定来评估CCL7在胃癌中的功能。1% O2模拟缺氧状态。KIAA1199和HIF1α参与了调控机制。结果显示,CCL7上调,其高表达与胃癌患者生存不良相关。抑制CCL7可减弱胃癌细胞的增殖、迁移、侵袭并诱导凋亡。同时,CCL7抑制可减弱缺氧诱导的胃癌加重。此外,KIAA1199和HIF1α参与了ccl7介导的缺氧条件下胃癌恶化的机制。我们的研究发现CCL7在胃癌发病过程中是一种新的肿瘤激活因子,缺氧诱导的肿瘤加重受HIF1α/CCL7/KIAA1199轴的调控。这一证据可能为胃癌治疗提供新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HIF1α/CCL7/KIAA1199 axis mediates hypoxia-induced gastric cancer aggravation and glycolysis alteration.

Gastric cancer is a common digestion tumor with high malignant severity and prevalence. Emerging studies reported C-C motif chemokine ligand 7 (CCL7) as a regulator of various tumor diseases. Our research explored the function and underlying mechanism of CCL7 during gastric cancer development. RT-qPCR, Western blot and other datasets were employed to evaluate CCL7 expression in tissues and cells. Kaplan-Meier and Cox regression analyses were recruited to evaluate the correlations between CCL7 expression and patients' survival or clinical features. A loss-of-function assay was performed to evaluate the function of CCL7 in gastric cancer. 1% O2 was utilized to mimic hypoxic condition. KIAA1199 and HIF1α were included in the regulatory mechanism. The results showed that CCL7 was up-regulated and its high expression was correlated with poor survival of gastric cancer patients. Depressing CCL7 attenuated proliferation, migration, invasion, and induced apoptosis of gastric cancer cells. Meanwhile, CCL7 inhibition weakened hypoxia-induced gastric cancer aggravation. Besides, KIAA1199 and HIF1α were involved in the mechanism of CCL7-mediated gastric cancer aggravation under hypoxia. Our research identified CCL7 as a novel tumor-activator in gastric cancer pathogenesis and hypoxia-induced tumor aggravation was regulated by HIF1α/CCL7/KIAA1199 axis. The evidence may provide a novel target for gastric cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
8.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Journal of Clinical Biochemistry and Nutrition (JCBN) is an international, interdisciplinary publication encompassing chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The Journal welcomes original contributions dealing with all aspects of clinical biochemistry and clinical nutrition including both in vitro and in vivo studies.
期刊最新文献
Helicobacter pylori infection and oxidative stress. Characterized factors of subjects who were first time diagnosed as hyperglycemia more than 126 mg/dl during annual or biannual medical checkups: a case-control study in Japan. Effect of cerium oxide on iron metabolism in mice. Effect of omega-3 fatty acids on sleep: a systematic review and meta-analysis of randomized controlled trials. Effective disruption of cancer cell membranes by photodynamic therapy with cell membrane-adhesive photosensitizer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1