280 mT静磁场促进产后髁突软骨生长。

IF 2.8 4区 医学 Q3 CELL BIOLOGY Connective Tissue Research Pub Date : 2023-05-01 DOI:10.1080/03008207.2022.2148527
Yiwen Xiao, Qinhao Shen, Weihao Li, Yibo Zhang, Kang Yin, Yanhua Xu
{"title":"280 mT静磁场促进产后髁突软骨生长。","authors":"Yiwen Xiao,&nbsp;Qinhao Shen,&nbsp;Weihao Li,&nbsp;Yibo Zhang,&nbsp;Kang Yin,&nbsp;Yanhua Xu","doi":"10.1080/03008207.2022.2148527","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences.</p><p><strong>Methods: </strong>Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining.</p><p><strong>Results: </strong>Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend.</p><p><strong>Conclusion: </strong>FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"280 mT static magnetic field promotes the growth of postpartum condylar cartilage.\",\"authors\":\"Yiwen Xiao,&nbsp;Qinhao Shen,&nbsp;Weihao Li,&nbsp;Yibo Zhang,&nbsp;Kang Yin,&nbsp;Yanhua Xu\",\"doi\":\"10.1080/03008207.2022.2148527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences.</p><p><strong>Methods: </strong>Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining.</p><p><strong>Results: </strong>Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend.</p><p><strong>Conclusion: </strong>FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2022.2148527\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2148527","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:用永磁体制作的功能矫形器用于颌骨矫形治疗。然而,永磁体产生的静磁场(static magnetic field, SMF)是否促进了髁突软骨的发育顺序,从而促进下颌骨的生长还有待研究。本研究的目的是探讨280 mT SMF对出生后髁软骨形成和软骨内成骨的影响,以及FLRT3、FGF2和BMP2信号在软骨发育序列中的作用。方法:48只大鼠分为两组(对照组和SMF组)。在规定的时间点采集髁突。用组织学染色观察髁突的组织形态学变化。通过免疫组化染色和显微ct扫描分析髁突软骨增殖分化相关蛋白的表达及软骨下骨微结构的变化。免疫荧光染色检测FLRT3、FGF2、BMP2的表达。结果:在SMF刺激下,幼龄大鼠软骨呈纵向和横向生长,软骨厚度随生长而变薄。SMF促进髁突软骨细胞增殖分化和软骨内成骨,增加软骨下骨密度,与BMP2信号通路有关。此外,在SMF加载下,FGF2和FLRT3的表达增加参与了软骨形态发生和生长的调节。在发育后期,FGF2/FLRT3表达的降低和BMP2表达的增加促进了软骨内成骨。SMF加速了这种相反的表达趋势。结论:FGF2/FLRT3和BMP2信号参与SMF暴露对软骨形成和软骨内成骨的调控作用,为临床应用磁性器械促进髁突生长提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
280 mT static magnetic field promotes the growth of postpartum condylar cartilage.

Purpose: Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences.

Methods: Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining.

Results: Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend.

Conclusion: FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
期刊最新文献
Insight into the role of integrins and integrins-targeting biomaterials in bone regeneration. Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain. Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research. Ubiquitin C-terminal hydrolase L1 activation in periodontal ligament cells mediates orthodontic tooth movement via the MAPK signaling pathway. Preliminary study of extracorporeal shock wave alleviating joint capsule fibrosis caused by internal bleeding of knee joint in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1